Marisa S Bartolomei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2112549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Frontiers in Cell and Developmental Biology, 2022, 10, 884088.	3.7	7
2	Embryo cryopreservation leads to sex-specific DNA methylation perturbations in both human and mouse placentas. Human Molecular Genetics, 2022, 31, 3855-3872.	2.9	8
3	Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells. Genes and Development, 2022, 36, 752-763.	5.9	17
4	DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genomics, 2022, 2, 100144.	6.5	37
5	Derivation and investigation of the first human cell-based model of Beckwith-Wiedemann syndrome. Epigenetics, 2021, 16, 1295-1305.	2.7	4
6	Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Molecular Cell, 2021, 81, 859-869.e8.	9.7	29
7	Sexâ€specific effects of in vitro fertilization on adult metabolic outcomes and hepatic transcriptome and proteome in mouse. FASEB Journal, 2021, 35, e21523.	0.5	13
8	The number of the CTCF binding sites of the <i>H19/IGF2</i> :IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model. Human Molecular Genetics, 2021, 30, 1509-1520.	2.9	10
9	Environmental Exposure to Endocrine Disrupting Chemicals Influences Genomic Imprinting, Growth, and Metabolism. Genes, 2021, 12, 1153.	2.4	65
10	Variably methylated retrotransposons are refractory to a range of environmental perturbations. Nature Genetics, 2021, 53, 1233-1242.	21.4	23
11	Two sides of the Dlk1-Dio3 story in imprinting. Developmental Cell, 2021, 56, 3035-3037.	7.0	2
12	Genomic imprinting: An epigenetic regulatory system. PLoS Genetics, 2020, 16, e1008970.	3.5	11
13	Paternal bisphenol A exposure in mice impairs glucose tolerance in female offspring. Food and Chemical Toxicology, 2020, 145, 111716.	3.6	12
14	Modeling human epigenetic disorders in mice: Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	23
15	TEX15 associates with MILI and silences transposable elements in male germ cells. Genes and Development, 2020, 34, 745-750.	5.9	33
16	Assisted reproductive technologies induce temporally specific placental defects and the preeclampsia risk marker sFLT1 in mouse. Development (Cambridge), 2020, 147, .	2.5	25
17	Timing of exposure to gonadotropins has differential effects on the conceptus: evidence from a mouse model. Biology of Reproduction, 2020, 103, 854-865.	2.7	6
18	Temple syndrome and Kagami-Ogata syndrome: clinical presentations, genotypes, models and mechanisms. Human Molecular Genetics, 2020, 29, R107-R116.	2.9	30

MARISA S BARTOLOMEI

#	Article	IF	CITATIONS
19	H19 is not hypomethylated or upregulated with age or sex in the aortic valves of mice. Physiological Reports, 2019, 7, e14244.	1.7	2
20	The effects of Assisted Reproductive Technologies on genomic imprinting in the placenta. Placenta, 2019, 84, 37-43.	1.5	25
21	Imatinib treatments have long-term impact on placentation and embryo survival. Scientific Reports, 2019, 9, 2535.	3.3	26
22	IFPA meeting 2018 workshop report I: Reproduction and placentation among ocean-living species; placental imaging; epigenetics and extracellular vesicles in pregnancy. Placenta, 2019, 84, 4-8.	1.5	2
23	Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis. Developmental Cell, 2019, 51, 745-758.e6.	7.0	47
24	Evolving imprinting control regions: KRAB zinc fingers hold the key. Genes and Development, 2019, 33, 1-3.	5.9	27
25	Histone modification signatures in human sperm distinguish clinical abnormalities. Journal of Assisted Reproduction and Genetics, 2019, 36, 267-275.	2.5	38
26	Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting. PLoS Genetics, 2019, 15, e1007874.	3.5	52
27	Combined Single-Cell Profiling of IncRNAs and Functional Screening Reveals that H19 Is Pivotal for Embryonic Hematopoietic Stem Cell Development. Cell Stem Cell, 2019, 24, 285-298.e5.	11.1	96
28	The NIEHS TaRGET II Consortium and environmental epigenomics. Nature Biotechnology, 2018, 36, 225-227.	17.5	79
29	In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22ÂSignaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration. Gastroenterology, 2018, 155, 144-155.	1.3	137
30	DNA methylation dynamics of genomic imprinting in mouse developmentâ€. Biology of Reproduction, 2018, 99, 252-262.	2.7	42
31	Imprinted gene dysregulation in a <i>Tet1</i> null mouse model is stochastic and variable in the germline and offspring. Development (Cambridge), 2018, 145, .	2.5	16
32	Pooled shRNA Screen for Reactivation of MeCP2 on the Inactive X Chromosome. Journal of Visualized Experiments, 2018, , .	0.3	2
33	Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 2018, 36, 240-248.	1.1	15
34	TRPM7 and Ca _V 3.2 channels mediate Ca ²⁺ influx required for egg activation at fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10370-E10378.	7.1	40
35	Mapping the diploid genome, one cell at a time. Nature Structural and Molecular Biology, 2018, 25, 994-995.	8.2	0
36	Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction. Hormones and Behavior, 2018, 102, 93-104.	2.1	46

MARISA S BARTOLOMEI

#	Article	IF	CITATIONS
37	Endocrine-disrupting chemicals, epigenetics, and skeletal system dysfunction: exploration of links using bisphenol A as a model system. Environmental Epigenetics, 2018, 4, dvy002.	1.8	11
38	Rapamycin-independent IGF2 expression in Tsc2-null mouse embryo fibroblasts and human lymphangioleiomyomatosis cells. PLoS ONE, 2018, 13, e0197105.	2.5	8
39	Tissue-specific and mosaic imprinting defects underlie opposite congenital growth disorders in mice. PLoS Genetics, 2018, 14, e1007243.	3.5	13
40	Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-β superfamily as a regulator of XIST expression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1619-1624.	7.1	51
41	Bile Acids and Tryptophan Metabolism Are Novel Pathways Involved in Metabolic Abnormalities in BPA-Exposed Pregnant Mice and Male Offspring. Endocrinology, 2017, 158, 2533-2542.	2.8	33
42	Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 2017, 68, 72-84.	2.9	72
43	The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse modelâ€. Biology of Reproduction, 2017, 97, 133-142.	2.7	44
44	Sex- and Dose-Specific Effects of Maternal Bisphenol A Exposure on Pancreatic Islets of First- and Second-Generation Adult Mice Offspring. Environmental Health Perspectives, 2017, 125, 097022.	6.0	97
45	Morphokinetic Evaluation of Embryo Development in a Mouse Model: Functional and Molecular Correlates1. Biology of Reproduction, 2016, 94, 84.	2.7	13
46	Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions. Epigenomics, 2016, 8, 455-473.	2.1	25
47	Reproductive Science for High School Students: A Shared Curriculum Model to Enhance Student Success. Biology of Reproduction, 2016, 95, 28-28.	2.7	4
48	Morphologic and molecular changes in the placenta: what we can learn from environmental exposures. Fertility and Sterility, 2016, 106, 930-940.	1.0	32
49	A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14366-14371.	7.1	25
50	Humanized <i>H19/lgf2</i> locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10938-10943.	7.1	28
51	Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics and Chromatin, 2016, 9, 24.	3.9	113
52	Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an <i>H19</i> loss-of-imprinting mutant. Genes and Development, 2016, 30, 567-578.	5.9	38
53	A Hox-Embedded Long Noncoding RNA: Is It All Hot Air?. PLoS Genetics, 2016, 12, e1006485.	3.5	38
54	A DNMT3A2-HDAC2 Complex Is Essential for Genomic Imprinting and Genome Integrity in Mouse Oocytes. Cell Reports, 2015, 13, 1552-1560.	6.4	32

#	Article	IF	CITATIONS
55	Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6841-6847.	7.1	57
56	Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature, 2015, 521, E1-E4.	27.8	159
57	Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?. Seminars in Cell and Developmental Biology, 2015, 43, 66-75.	5.0	191
58	Characterization of BRD4 during Mammalian Postmeiotic Sperm Development. Molecular and Cellular Biology, 2015, 35, 1433-1448.	2.3	38
59	CRISPR-Cas9-Mediated Genetic Screening in Mice with Haploid Embryonic Stem Cells Carrying a Guide RNA Library. Cell Stem Cell, 2015, 17, 221-232.	11.1	91
60	Multigenerational and transgenerational inheritance of drug exposure: The effects of alcohol, opiates, cocaine, marijuana, andÂnicotine. Progress in Biophysics and Molecular Biology, 2015, 118, 21-33.	2.9	121
61	The cumulative effect of assisted reproduction procedures on placental development and epigenetic perturbations in a mouse model. Human Molecular Genetics, 2015, 24, ddv400.	2.9	108
62	Bisphenol A Exposure Disrupts Metabolic Health Across Multiple Generations in the Mouse. Endocrinology, 2015, 156, 2049-2058.	2.8	126
63	Epigenetics and imprinting in human disease. International Journal of Developmental Biology, 2014, 58, 291-298.	0.6	103
64	Differential Methylation of Genes Associated with Cell Adhesion in Preeclamptic Placentas. PLoS ONE, 2014, 9, e100148.	2.5	78
65	Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Abnormal Placentation and Fetal Growth1. Biology of Reproduction, 2014, 90, 26.	2.7	82
66	Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region. Human Molecular Genetics, 2014, 23, 6246-6259.	2.9	26
67	CTCF Binding to the First Intron of the Major Immediate Early (MIE) Gene of Human Cytomegalovirus (HCMV) Negatively Regulates MIE Gene Expression and HCMV Replication. Journal of Virology, 2014, 88, 7389-7401.	3.4	45
68	Genomic imprinting in development, growth, behavior and stem cells. Development (Cambridge), 2014, 141, 1805-1813.	2.5	193
69	Chromatin regulators of genomic imprinting. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 169-177.	1.9	40
70	In Vitro Culture Increases the Frequency of Stochastic Epigenetic Errors at Imprinted Genes in Placental Tissues from Mouse Concepti Produced Through Assisted Reproductive Technologies1. Biology of Reproduction, 2014, 90, 22.	2.7	111
71	Genomic Imprinting in Mammals. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018382-a018382.	5.5	573
72	You are what you eat, but what about your DNA?. Science, 2014, 345, 733-734.	12.6	17

Marisa S Bartolomei

#	Article	IF	CITATIONS
73	X-Inactivation, Imprinting, and Long Noncoding RNAs in Health and Disease. Cell, 2013, 152, 1308-1323.	28.9	631
74	Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse. PLoS Genetics, 2013, 9, e1003401.	3.5	253
75	Primary epimutations introduced during intracytoplasmic sperm injection (ICSI) are corrected by germline-specific epigenetic reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4163-4168.	7.1	55
76	Mammalian Genomic Imprinting. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002592-a002592.	5.5	423
77	Thymine DNA Glycosylase Is Essential for Active DNA Demethylation by Linked Deamination-Base Excision Repair. Cell, 2011, 146, 67-79.	28.9	700
78	Nonallelic Transcriptional Roles of CTCF and Cohesins at Imprinted Loci. Molecular and Cellular Biology, 2011, 31, 3094-3104.	2.3	44
79	Domain-Specific Response of Imprinted Genes to Reduced DNMT1. Molecular and Cellular Biology, 2010, 30, 3916-3928.	2.3	41
80	Imprinting and epigenetic changes in the early embryo. Mammalian Genome, 2009, 20, 532-543.	2.2	132
81	Genomic imprinting: employing and avoiding epigenetic processes. Genes and Development, 2009, 23, 2124-2133.	5.9	220
82	Genomic imprinting mechanisms in mammals. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 77-85.	1.0	190
83	Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Human Molecular Genetics, 2008, 17, 1-14.	2.9	303
84	SnapShot: Imprinted Gene Clusters. Cell, 2007, 130, 958.e1-958.e2.	28.9	32
85	CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/lgf2 locus. Human Molecular Genetics, 2006, 15, 2945-2954.	2.9	134
86	Developmental Profile of H19 Differentially Methylated Domain (DMD) Deletion Alleles Reveals Multiple Roles of the DMD in Regulating Allelic Expression and DNA Methylation at the Imprinted H19 / Igf2 Locus. Molecular and Cellular Biology, 2006, 26, 1245-1258.	2.3	55
87	Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genetics, 2005, preprint, e137.	3.5	0
88	Gene-specific timing and epigenetic memory in oocyte imprinting. Human Molecular Genetics, 2004, 13, 839-849.	2.9	410
89	Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations. Nature Genetics, 2004, 36, 883-888.	21.4	107
90	Selective loss of imprinting in the placenta following preimplantation development in culture. Development (Cambridge), 2004, 131, 3727-3735.	2.5	389

MARISA S BARTOLOMEI

#	Article	IF	CITATIONS
91	Epigenetics: Role of Germ Cell Imprinting. Advances in Experimental Medicine and Biology, 2003, 518, 239-245.	1.6	21
92	Analysis of Sequence Upstream of the Endogenous <i>H19</i> Gene Reveals Elements Both Essential and Dispensable for Imprinting. Molecular and Cellular Biology, 2002, 22, 2450-2462.	2.3	74
93	Maintaining imprinting. Nature Genetics, 2000, 25, 4-5.	21.4	11
94	Differential Effects of Culture on Imprinted H19 Expression in the Preimplantation Mouse Embryo1. Biology of Reproduction, 2000, 62, 1526-1535.	2.7	687
95	Imprinted expression and methylation of the mouseH19 gene are conserved in extraembryonic lineages. , 1998, 23, 111-118.		25
96	GENOMIC IMPRINTING IN MAMMALS. Annual Review of Genetics, 1997, 31, 493-525.	7.6	580
97	A paternal–specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genetics, 1995, 9, 407-413.	21.4	396
98	The search for imprinted genes. Nature Genetics, 1994, 6, 220-221.	21.4	21
99	Physical linkage of two mammalian imprinted genes, H19 and insulin–like growth factor 2. Nature Genetics, 1992, 2, 61-65.	21.4	280
100	Parental imprinting of the mouse H19 gene. Nature, 1991, 351, 153-155.	27.8	1,151
101	Hyperglycemia-induced TET3 insufficiency is responsible for maternal transmission of glucose intolerance. Biology of Reproduction, 0, , .	2.7	Ο