Carla Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2112366/publications.pdf

Version: 2024-02-01

304602 276775 1,974 59 22 41 citations h-index g-index papers 66 66 66 3352 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Disorder-to-order transition of Synaptobrevin-2: Tracing the conformational diversity of a synaptic SNARE protein. Journal of Structural Biology, 2022, 214, 107824.	1.3	2
2	Viral immune evasins impact antigen presentation by allele-specific trapping of MHCÂI at the peptide-loading complex. Scientific Reports, 2022, 12, 1516.	1.6	3
3	Quantitative proteomics and in-cell cross-linking reveal cellular reorganisation during early neuronal differentiation of SH-SY5Y cells. Communications Biology, 2022, 5, .	2.0	6
4	Alternatively spliced isoforms of AUF1 regulate a miRNA–mRNA interaction differentially through their YGG motif. RNA Biology, 2021, 18, 843-853.	1.5	8
5	Quantitative Mass Spectrometry-Based Proteomics: An Overview. Methods in Molecular Biology, 2021, 2228, 85-116.	0.4	84
6	Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes. Nature Communications, 2021, 12, 858.	5.8	26
7	Liposomes as Carriers of Membraneâ€Associated Proteins and Peptides for Mass Spectrometric Analysis. Angewandte Chemie - International Edition, 2021, 60, 11523-11530.	7.2	16
8	Liposomen als \tilde{A} we bertr \tilde{A} ger membranassoziierter Proteine und Peptide f \tilde{A} 1/4r die massenspektrometrische Analyse. Angewandte Chemie, 2021, 133, 11624-11632.	1.6	0
9	Titelbild: Liposomen als ÜbertrÃ g er membranassoziierter Proteine und Peptide fýr die massenspektrometrische Analyse (Angew. Chem. 20/2021). Angewandte Chemie, 2021, 133, 11097-11097.	1.6	O
10	Nanoscale Model System for the Human Myelin Sheath. Biomacromolecules, 2021, 22, 3901-3912.	2.6	3
11	Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nature Communications, 2021, 12, 5610.	5.8	24
12	Thin‣ayer Chromatography and Coomassie Staining of Phospholipids for Fast and Simple Lipidomics Sample Preparation. Analysis & Sensing, 2021, 1, 171-179.	1.1	2
13	Effects of non-ionic and zwitterionic detergents on soluble proteins during native mass spectrometry experiments. International Journal of Mass Spectrometry, 2021, 468, 116652.	0.7	4
14	Quantitative Cross-Linking of Proteins and Protein. Methods in Molecular Biology, 2021, 2228, 385-400.	0.4	4
15	Exploring Phosphoinositide Binding Using Native Mass Spectrometry. Methods in Molecular Biology, 2021, 2251, 157-175.	0.4	O
16	Thinâ€Layer Chromatography and Coomassie Staining of Phospholipids for Fast and Simple Lipidomics Sample Preparation. Analysis & Sensing, 2021, 1, 134.	1.1	0
17	The CroCo cross-link converter: a user-centred tool to convert results from cross-linking mass spectrometry experiments. Bioinformatics, 2020, 36, 1296-1297.	1.8	6
18	Control of p21Cip by BRCA1-associated protein is critical for cardiomyocyte cell cycle progression and survival. Cardiovascular Research, 2020, 116, 592-604.	1.8	9

#	Article	IF	Citations
19	Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging. Journal of Biological Chemistry, 2020, 295, 16499-16509.	1.6	4
20	Native mass spectrometry—A valuable tool in structural biology. Journal of Mass Spectrometry, 2020, 55, e4578.	0.7	45
21	Evaluation of NHS-Acetate and DEPC labelling for determination of solvent accessible amino acid residues in protein complexes. Journal of Proteomics, 2020, 222, 103793.	1.2	5
22	Formation and Stoichiometry of CRISPR-Cascade Complexes with Varying Spacer Lengths Revealed by Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 538-546.	1,2	6
23	Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking. Journal of the American Society for Mass Spectrometry, 2019, 30, 149-160.	1.2	14
24	Instrument response of phosphatidylglycerol lipids with varying fatty acyl chain length in nano-ESI shotgun experiments. Chemistry and Physics of Lipids, 2019, 223, 104782.	1.5	7
25	Structural and Functional Analyses of the Human PDH Complex Suggest a "Division-of-Labor― Mechanism by Local E1 and E3 Clusters. Structure, 2019, 27, 1124-1136.e4.	1.6	23
26	Decision-Making in Cascade Complexes Harboring crRNAs of Altered Length. Cell Reports, 2019, 28, 3157-3166.e4.	2.9	15
27	Protein–Lipid Interactions Stabilize the Oligomeric State of BOR1p from <i>Saccharomyces cerevisiae</i> . Analytical Chemistry, 2019, 91, 13071-13079.	3.2	14
28	First Community-Wide, Comparative Cross-Linking Mass Spectrometry Study. Analytical Chemistry, 2019, 91, 6953-6961.	3.2	100
29	Mass spectrometry of membrane protein complexes. Biological Chemistry, 2019, 400, 813-829.	1.2	19
30	Mass spectrometryâ€"A versatile tool for characterising the lipid environment of membrane protein assemblies. Chemistry and Physics of Lipids, 2019, 221, 145-157.	1.5	23
31	Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. Journal of Proteomics, 2018, 175, 34-41.	1.2	19
32	A novel sample preparation strategy for shotgun lipidomics of phospholipids employing multilamellar vesicles. Analytical and Bioanalytical Chemistry, 2018, 410, 4253-4258.	1.9	8
33	Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling. Analytical Chemistry, 2017, 89, 1459-1468.	3.2	46
34	Acetylation and phosphorylation control both local and global stability of the chloroplast F1 ATP synthase. Scientific Reports, 2017, 7, 44068.	1.6	18
35	Accommodating Protein Dynamics in the Modeling of Chemical Crosslinks. Structure, 2017, 25, 1751-1757.e5.	1.6	36
36	Structure based biophysical characterization of the PROPPIN Atg18 shows Atg18 oligomerization upon membrane binding. Scientific Reports, 2017, 7, 14008.	1.6	38

#	Article	IF	Citations
37	Smallâ€Moleculeâ€Induced Soluble Oligomers of αâ€Synuclein with Helical Structure. Chemistry - A European Journal, 2017, 23, 13010-13014.	1.7	14
38	Combining Chemical Cross-linking and Mass Spectrometry of Intact Protein Complexes to Study the Architecture of Multi-subunit Protein Assemblies. Journal of Visualized Experiments, 2017, , .	0.2	9
39	Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Current Opinion in Structural Biology, 2017, 46, 157-168.	2.6	69
40	Structure of the human MHC-I peptide-loading complex. Nature, 2017, 551, 525-528.	13.7	284
41	Dimer interface of bovine cytochrome <i>c</i> oxidase is influenced by local posttranslational modifications and lipid binding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8230-8235.	3.3	40
42	Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature, 2016, 539, 118-122.	13.7	141
43	Uncovering the Early Assembly Mechanism for Amyloidogenic Î ² 2-Microglobulin Using Cross-linking and Native Mass Spectrometry. Journal of Biological Chemistry, 2016, 291, 4626-4637.	1.6	24
44	Insights into Eukaryotic Translation Initiation from Mass Spectrometry of Macromolecular Protein Assemblies. Journal of Molecular Biology, 2016, 428, 344-356.	2.0	14
45	elF2 interactions with initiator tRNA and elF2B are regulated by post-translational modifications and conformational dynamics. Cell Discovery, 2015, 1, 15020.	3.1	29
46	Topological Models of Heteromeric Protein Assemblies from Mass Spectrometry: Application to the Yeast elF3:elF5 Complex. Chemistry and Biology, 2015, 22, 117-128.	6.2	38
47	Hsp70 Forms Antiparallel Dimers Stabilized by Post-translational Modifications to Position Clients for Transfer to Hsp90. Cell Reports, 2015, 11, 759-769.	2.9	93
48	The joining of the Hsp90 and Hsp70 chaperone cycles yields transient interactions and stable intermediates: insights from mass spectrometry. Oncotarget, 2015, 6, 18276-18281.	0.8	8
49	Dynamic protein ligand interactions–Âinsights from <scp>MS</scp> . FEBS Journal, 2014, 281, 1950-1964.	2.2	61
50	elF2B is a decameric guanine nucleotide exchange factor with a $\hat{I}^32\hat{I}\mu2$ tetrameric core. Nature Communications, 2014, 5, 3902.	5.8	71
51	A comparative cross-linking strategy to probe conformational changes in protein complexes. Nature Protocols, 2014, 9, 2224-2236.	5.5	93
52	Analyzing the Protein Assembly and Dynamics of the Human Spliceosome with SILAC. Methods in Molecular Biology, 2014, 1188, 227-244.	0.4	3
53	Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nature Communications, 2013, 4, 1985.	5.8	122
54	An automated inâ€gel digestion/iTRAQâ€labeling workflow for robust quantification of gelâ€separated proteins. Proteomics, 2013, 13, 1417-1422.	1.3	23

#	Article	IF	CITATIONS
55	Investigation of protein–RNA interactions by mass spectrometry—Techniques and applications. Journal of Proteomics, 2012, 75, 3478-3494.	1.2	43
56	Absolute Quantification of Proteins Using Standard Peptides and Multiple Reaction Monitoring. Methods in Molecular Biology, 2012, 893, 249-265.	0.4	14
57	Proteomic basics â€" quantification and post-translational modifications of proteins: The 3rd European Summer School in Kloster Neustift. Journal of Proteomics, 2010, 73, 697-700.	1.2	0
58	Determination of Protein Stoichiometry within Protein Complexes Using Absolute Quantification and Multiple Reaction Monitoring. Analytical Chemistry, 2010, 82, 2784-2796.	3.2	79
59	iTRAQ-Labeling of In-Gel Digested Proteins for Relative Quantification. Methods in Molecular Biology, 2009, 564, 207-226.	0.4	23