
Rod Cross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111946/publications.pdf Version: 2024-02-01

POD CROSS

#	Article	IF	CITATIONS
1	Two-dimensional collisions of disks and spheres. European Journal of Physics, 2022, 43, 015007.	0.6	3
2	Collision of two coins on a horizontal surface. Physics Education, 2022, 57, 015009.	0.5	0
3	An experiment with two bottle tops. Physics Education, 2022, 57, 013002.	0.5	Ο
4	Oblique impact of ice hockey and plastic pucks with a rigid surface. European Journal of Physics, 2022, 43, 025003.	0.6	2
5	Falling faster than g, exponentially. Physics Education, 2022, 57, 035001.	0.5	Ο
6	Billiard ball vs rubber ball collisions. Physics Education, 2022, 57, 033001.	0.5	1
7	Reply to Comment on â€ [~] An electrostatics paradox'. Physics Education, 2022, 57, 038002.	0.5	Ο
8	Actual vs textbook transformers. Physics Education, 2022, 57, 023003.	0.5	0
9	A Faraday's law paradox. Physics Education, 2022, 57, 013003.	0.5	0
10	An electrostatics paradox. Physics Education, 2022, 57, 023001.	0.5	2
11	Curious behaviour of spinning coffee cups and other spinning objects. Physics Education, 2022, 57, 015022.	0.5	Ο
12	†Levitation' of a falling pencil. Physics Education, 2022, 57, 043002.	0.5	1
13	Motion of a plucked string or spring. Physics Education, 2022, 57, 043005.	0.5	Ο
14	Precession of a ball rolling in a circular path. Physics Education, 2022, 57, 045036.	0.5	0
15	A single collision between three objects cannot be described using only two conservation equations. Physics Education, 2022, 57, 055004.	0.5	Ο
16	Oblique angle collisions of two pendulum balls. American Journal of Physics, 2022, 90, 506-512.	0.7	2
17	Trajectory of a ball on an inclined plane. Physics Education, 2022, 57, 055007.	0.5	1
18	Trajectory of an object sliding across an incline. Physics Education, 2022, 57, 055013.	0.5	0

#	Article	IF	CITATIONS
19	Bouncing up and down an incline. Physics Education, 2022, 57, 055021.	0.5	Ο
20	Pendulum motion on an inclined plane. Physics Education, 2022, 57, 055012.	0.5	1
21	Vertical bounce of a spinning ball. Physics Education, 2021, 56, 023002.	0.5	2
22	Rotating ring on a vertical rod. Physics Education, 2021, 56, 023003.	0.5	3
23	Acceleration of a ball down an inclined plane. Physics Education, 2021, 56, 035017.	0.5	4
24	Impact of a double sphere dropped vertically onto a horizontal surface. European Journal of Physics, 2021, 42, 025014.	0.6	1
25	Effect of friction on a hula hoop. Physics Education, 2021, 56, 033001.	0.5	2
26	A conical pendulum model of a rotating chain. European Journal of Physics, 2021, 42, 035007.	0.6	1
27	Oblique bounce of a double sphere on a horizontal surface. European Journal of Physics, 2021, 42, 035010.	0.6	1
28	Transition from sliding to rolling in billiards and golf. Physics Education, 2021, 56, 045003.	0.5	1
29	Oscillation frequencies of a double pendulum. Physics Education, 2021, 56, 043003.	0.5	Ο
30	Simulating the flight of an oval football. Physics Education, 2021, 56, 043002.	0.5	0
31	How to levitate an egg. Physics Education, 2021, 56, 043010.	0.5	4
32	Bouncing ball impacts. American Journal of Physics, 2021, 89, 452-452.	0.7	0
33	Bounce of a biassed ball. Physics Education, 2021, 56, 055001.	0.5	1
34	A bead on a rotating rod experiment. Physics Education, 2021, 56, 055012.	0.5	1
35	Observations of a driven pendulum at low amplitudes. European Journal of Physics, 2021, 42, 055001.	0.6	1
36	Physics of a hopping hoop. Physics Education, 2021, 56, 053005.	0.5	1

#	Article	IF	CITATIONS
37	A falling rod on wheels. Physics Education, 2021, 56, 055024.	0.5	Ο
38	The fall of an inclined rod. European Journal of Physics, 2021, 42, 055005.	0.6	3
39	Coefficients of restitution for a collision. Physics Education, 2021, 56, 065017.	0.5	0
40	Rolling motion of a ball on a turntable. Physics Education, 2021, 56, 065003.	0.5	1
41	Collision of a ball with a wood block. Physics Education, 2021, 56, 065021.	0.5	Ο
42	Energy loss in cue-ball collisions. European Journal of Physics, 2021, 42, 065003.	0.6	0
43	Experimental study of the gear effect. European Journal of Physics, 2021, 42, 065013.	0.6	Ο
44	Experiments with colliding rods. European Journal of Physics, 2021, 42, 065009.	0.6	0
45	Oblique impact of a hard ball on a soft surface. European Journal of Physics, 2021, 42, 065006.	0.6	2
46	A wall of death experiment. Physics Education, 2021, 56, 023006.	0.5	0
47	The effect of very small ball gaps in Newton's cradle. European Journal of Physics, 2021, 42, 025004.	0.6	4
48	Physics of a hula hoop. Physics Education, 2021, 56, 025015.	0.5	2
49	Coefficient of restitution for an obliquely bouncing ball. Physics Education, 2021, 56, 015004.	O.5	4
50	Vertical bounce of a plastic egg. Physics Education, 2021, 56, 025005.	0.5	1
51	Understanding Newton's cradle. II: exploring a real cradle. Physics Education, 2021, 56, 025002.	0.5	3
52	Understanding Newton's cradle. I: modelling the ideal cradle. Physics Education, 2021, 56, 025001.	0.5	7
53	Pendulum motion of a biased cylindrical tube. European Journal of Physics, 2020, 41, 015006.	0.6	5
54	Rolling resistance of hard balls on soft surfaces. European Journal of Physics, 2020, 41, 025005.	0.6	2

#	Article	IF	CITATIONS
55	Validation of ball spin estimates in tennis from multi-camera tracking data. Journal of Sports Sciences, 2020, 38, 296-303.	2.0	7
56	Measuring the topspin and sidespin components of a rolling ball. Physics Education, 2020, 55, 015022.	0.5	0
57	A hemispherical tippe top. European Journal of Physics, 2020, 41, 025001.	0.6	1
58	Newton's cradle with an end stop. European Journal of Physics, 2020, 41, 065004.	0.6	1
59	Two balls stuck by friction on an incline, and a four ball pyramid. Physics Education, 2020, 55, 055013.	0.5	2
60	Bouncing along a horizontal surface. Physics Education, 2020, 55, 043001.	0.5	1
61	Bouncing a ball at rest on a surface. Physics Education, 2020, 55, 035021.	0.5	1
62	Measurements of the drag force on balls in water. European Journal of Physics, 2020, 41, 055003.	0.6	5
63	Impulse excitation of mechanical resonators: mass–spring systems and fishing rods. European Journal of Physics, 2020, 41, 065008.	0.6	0
64	Head-on car collisions. Physics Education, 2020, 55, 033002.	0.5	0
65	The rolling friction formula. Physics Education, 2020, 55, 033003.	0.5	2
66	Measuring coefficients of restitution with a piezo disk. Physics Education, 2020, 55, 035008.	0.5	3
67	Impact of a ball with a rigid rod. European Journal of Physics, 2020, 41, 035001.	0.6	0
68	Calculations of groundstroke trajectories in tennis. Sports Engineering, 2020, 23, 1.	1.1	13
69	Impact of a ball with a flexible beam. European Journal of Physics, 2020, 41, 045003.	0.6	0
70	An inclined beam at rest on a ball or cylinder. Physics Education, 2020, 55, 055014.	0.5	0
71	Impact force between two colliding billiard balls. Physics Education, 2020, 55, 065002.	0.5	3
72	A two-dimensional version of Newton's cradle. Physics Education, 2020, 55, 063001.	0.5	0

5

#	Article	IF	CITATIONS
73	A simple experiment to model speed bumps and humps. European Journal of Physics, 2020, 41, 065010.	0.6	О
74	The impact of a hammer and a nail. Physics Education, 2019, 54, 055022.	0.5	0
75	A spinning top for physics experiments. Physics Education, 2019, 54, 055028.	0.5	2
76	Spin experiments with a biased ball. European Journal of Physics, 2019, 40, 055003.	0.6	2
77	Collision of a ball with the edge of a step. European Journal of Physics, 2019, 40, 065007.	0.6	ο
78	Correcting camera perspective errors. Physics Education, 2019, 54, 063005.	0.5	0
79	Energy losses in a rolling ball. European Journal of Physics, 2019, 40, 035003.	0.6	4
80	Topspin generation in tennis. Sports Engineering, 2019, 22, 1.	1.1	2
81	The abrupt ending of a spinning disk. European Journal of Physics, 2019, 40, 065002.	0.6	О
82	Oblique impact of a steel ball. Powder Technology, 2019, 351, 282-290.	4.2	13
83	Why some balls spin faster than others when they bounce. Physics Education, 2019, 54, 035009.	0.5	ο
84	Julius Sumner Miller. Physics Education, 2019, 54, 026501.	0.5	0
85	Elastic deformation of a bouncing ball. European Journal of Physics, 2019, 40, 035002.	0.6	2
86	Effect of topspin on the apparent speed of a tennis court. Sports Engineering, 2019, 22, 1.	1.1	1
87	Rolling over an obstacle. European Journal of Physics, 2019, 40, 015005.	0.6	0
88	Bounce of a perfectly elastic ball. Physics Education, 2019, 54, 013001.	0.5	0
89	Oblique impact of a spinning rubber ball. European Journal of Physics, 2019, 40, 025002.	0.6	2
90	Effects of rolling friction on a spinning coin or disk. European Journal of Physics, 2018, 39, 035005.	0.6	3

#	Article	IF	CITATIONS
91	Comment on â€~An impacting linear three body system'. European Journal of Physics, 2018, 39, 038001.	0.6	Ο
92	Dynamics of a spherical tippe top. European Journal of Physics, 2018, 39, 035001.	0.6	3
93	Further remarks on â€~A comparative study of two types of ball-on-ball collision' 2017 <i>Phys. Educ</i> . 52 045013. Physics Education, 2018, 53, 026501.	0.5	0
94	Throwing accuracy. Physics Education, 2018, 53, 035021.	0.5	2
95	Multiple collisions of two steel balls in a Newton's cradle. European Journal of Physics, 2018, 39, 025001.	0.6	10
96	Remarks on â€~A comparative study of two types of ball-on-ball collision'. Physics Education, 2018, 53, 016501.	0.5	0
97	Why does a spinning egg rise?. European Journal of Physics, 2018, 39, 025002.	0.6	10
98	Static friction on a ball rolling down an incline. Physics Education, 2018, 53, 065014.	0.5	3
99	Launch speed, angle and spin in golf. European Journal of Physics, 2018, 39, 065003.	0.6	4
100	A common problem with video cameras. Physics Education, 2018, 53, 055014.	0.5	1
101	Backward bounce of a spinning ball. European Journal of Physics, 2018, 39, 045007.	0.6	3
102	The Chappaquiddick Incident. Physics Teacher, 2016, 54, 520-522.	0.3	1
103	Motion of a Ball on a Moving Surface. Physics Teacher, 2016, 54, 76-79.	0.3	2
104	Coulomb's law for rolling friction. American Journal of Physics, 2016, 84, 221-230.	0.7	43
105	Surprising Behavior of Spinning Tops and Eggs on an Inclined Plane. Physics Teacher, 2016, 54, 28-30.	0.3	2
106	Vertical Impact of a Sphere Falling into Water. Physics Teacher, 2016, 54, 153-155.	0.3	7
107	Why low bounce balls exhibit high rolling resistance. Physics Education, 2015, 50, 717-721.	0.5	4
108	Behaviour of a bouncing ball. Physics Education, 2015, 50, 335-341.	0.5	15

#	Article	IF	CITATIONS
109	Precession of a Spinning Ball Rolling Down an Inclined Plane. Physics Teacher, 2015, 53, 217-219.	0.3	4
110	Why Chalk Breaks into Three Pieces When Dropped. Physics Teacher, 2015, 53, 13-14.	0.3	1
111	Impact behavior of a superball. American Journal of Physics, 2015, 83, 238-248.	0.7	33
112	Physics of swinging a striking implement. Physics Education, 2015, 50, 232-236.	0.5	1
113	Experimenting with a spinning disk. Physics Education, 2015, 50, 197-202.	0.5	5
114	Factors affecting the vibration of tennis racquets. Sports Engineering, 2015, 18, 135-147.	1.1	8
115	Oblique Bounce of a Rubber Ball. Experimental Mechanics, 2014, 54, 1523-1536.	2.0	14
116	Comment on "An accurate determination of the acceleration of gravity for lecture hall demonstration―[Am. J. Phys. 55, 324–330 (1987)]. American Journal of Physics, 2014, 82, 803-804.	0.7	2
117	Measurements of drag and lift on tennis balls in flight. Sports Engineering, 2014, 17, 89-96.	1.1	24
118	Impact of sports balls with striking implements. Sports Engineering, 2014, 17, 3-22.	1.1	47
119	Measuring the Drag Force on a Falling Ball. Physics Teacher, 2014, 52, 169-170.	0.3	20
120	Misinterpretation of expert evidence in Wood v R. Australian Journal of Forensic Sciences, 2014, 46, 368-382.	1.2	0
121	Impact behavior of hollow balls. American Journal of Physics, 2014, 82, 189-195.	0.7	25
122	The footprint of a tennis ball. Sports Engineering, 2014, 17, 239-247.	1.1	10
123	Laithwaite's Heavy Spinning Disk Demonstration. Physics Teacher, 2014, 52, 349-349.	0.3	4
124	Spinning eggs and ballerinas. Physics Education, 2013, 48, 51-56.	0.5	7
125	The rise and fall of spinning tops. American Journal of Physics, 2013, 81, 280-289.	0.7	24
126	Effect of configuration on the biomechanical performance of three suture materials used in combination with a metallic bone anchor. American Journal of Veterinary Research, 2013, 74, 1487-1492.	0.6	1

#	Article	IF	CITATIONS
127	Spherical Tippe Tops. Physics Teacher, 2013, 51, 144-145.	0.3	2
128	Elastic Properties of Plasticine, Silly Putty, and Tennis Strings. Physics Teacher, 2012, 50, 527-529.	0.3	12
129	Rolling Motion of a Ball Spinning About a Near-Vertical Axis. Physics Teacher, 2012, 50, 25-27.	0.3	8
130	Edme Mariotte and Newton's Cradle. Physics Teacher, 2012, 50, 206-207.	0.3	5
131	Aerodynamics in the classroom and at the ball park. American Journal of Physics, 2012, 80, 289-297.	0.7	14
132	Modeling a falling slinky. American Journal of Physics, 2012, 80, 1051-1060.	0.7	18
133	Measuring the Effects of Lift and Drag on Projectile Motion. Physics Teacher, 2012, 50, 80-82.	0.3	3
134	Elastic and viscous properties of Silly Putty. American Journal of Physics, 2012, 80, 870-875.	0.7	69
135	The kick serve in tennis. Sports Technology, 2011, 4, 19-28.	0.4	11
136	A double pendulum model of tennis strokes. American Journal of Physics, 2011, 79, 470-476.	0.7	14
137	Launch of a Vehicle from a Ramp. Physics Teacher, 2011, 49, 410-411.	0.3	5
138	Impact forces and torques transmitted to the hand by tennis racquets. Sports Technology, 2010, 3, 102-111.	0.4	4
139	Bounce of an oval shaped football. Sports Technology, 2010, 3, 168-180.	0.4	15
140	The polar moment of inertia of striking implements. Sports Technology, 2010, 3, 215-219.	0.4	6
141	Measurement of the speed and bounce of tennis courts. Sports Technology, 2010, 3, 112-120.	0.4	6
142	Enhancing the Bounce of a Ball. Physics Teacher, 2010, 48, 450-452.	0.3	13
143	Impact of a ball on a surface with tangential compliance. American Journal of Physics, 2010, 78, 716-720.	0.7	7
144	Mechanics of swinging a bat. American Journal of Physics, 2009, 77, 36-43.	0.7	24

9

#	Article	IF	CITATIONS
145	Forensic Physics 101: Falls from a height. American Journal of Physics, 2008, 76, 833-837.	0.7	7
146	Cue and ball deflection (or "squirtâ€) in billiards. American Journal of Physics, 2008, 76, 205-212.	0.7	12
147	Differences between bouncing balls, springs, and rods. American Journal of Physics, 2008, 76, 908-915.	0.7	19
148	Experimental study of the gear effect in ball collisions. American Journal of Physics, 2007, 75, 658-664.	0.7	15
149	Aerodynamics of a Party Balloon. Physics Teacher, 2007, 45, 334-336.	0.3	9
150	Vertical bounce of two vertically aligned balls. American Journal of Physics, 2007, 75, 1009-1016.	0.7	15
151	Effects of swing-weight on swing speed and racket power. Journal of Sports Sciences, 2006, 24, 23-30.	2.0	59
152	Scattering of a baseball by a bat. American Journal of Physics, 2006, 74, 896-904.	0.7	32
153	The fall and bounce of pencils and other elongated objects. American Journal of Physics, 2006, 74, 26-30.	0.7	31
154	Fatal Falls from a Height: Two Case Studies. Journal of Forensic Sciences, 2006, 51, 93-99.	1.6	19
155	A double pendulum swing experiment: In search of a better bat. American Journal of Physics, 2005, 73, 330-339.	0.7	19
156	String tension effects on tennis ball rebound speed and accuracy during playing conditions. Journal of Sports Sciences, 2005, 23, 765-771.	2.0	20
157	Bounce of a spinning ball near normal incidence. American Journal of Physics, 2005, 73, 914-920.	0.7	37
158	Increase in friction force with sliding speed. American Journal of Physics, 2005, 73, 812-816.	0.7	17
159	Physics of overarm throwing. American Journal of Physics, 2004, 72, 305-312.	0.7	33
160	Center of percussion of hand-held implements. American Journal of Physics, 2004, 72, 622-630.	0.7	26
161	Oblique impact of a tennis ball on the strings of a tennis racket. Sports Engineering, 2003, 6, 235-254.	1.1	18
162	Measurements of the horizontal and vertical speeds of tennis courts. Sports Engineering, 2003, 6, 95-111.	1.1	19

#	Article	IF	CITATIONS
163	Player sensitivity to changes in string tension in a tennis racket. Journal of Science and Medicine in Sport, 2003, 6, 120-131.	1.3	11
164	Grip-slip behavior of a bouncing ball. American Journal of Physics, 2002, 70, 1093-1102.	0.7	139
165	Measurements of the horizontal coefficient of restitution for a superball and a tennis ball. American Journal of Physics, 2002, 70, 482-489.	0.7	98
166	The dual function of sand on a clay tennis court. Physics Teacher, 2001, 39, 330-331.	0.3	3
167	Customising a tennis racket by adding weights. Sports Engineering, 2001, 4, 1.	1.1	39
168	Response to "Comment on †The sweet spot of a baseball bat' ―[Am. J. Phys. 69 (2), 229–230 (20 American Journal of Physics, 2001, 69, 231-232.	001)].	7
169	Laboratory testing of tennis strings. Sports Engineering, 2000, 3, 219-230.	1.1	11
170	Tension loss along a string. American Journal of Physics, 2000, 68, 1152-1153.	0.7	2
171	Standing, walking, running, and jumping on a force plate. American Journal of Physics, 1999, 67, 304-309.	0.7	97
172	Role of the centrifugal force in vehicle roll. American Journal of Physics, 1999, 67, 447-448.	0.7	5
173	Impact of a ball with a bat or racket. American Journal of Physics, 1999, 67, 692-702.	0.7	48
174	The bounce of a ball. American Journal of Physics, 1999, 67, 222-227.	0.7	181
175	The trajectory of a ball in lawn bowls. American Journal of Physics, 1998, 66, 735-738.	0.7	13
176	The sweet spot of a baseball bat. American Journal of Physics, 1998, 66, 772-779.	0.7	63
177	The dead spot of a tennis racket. American Journal of Physics, 1997, 65, 754-764.	0.7	25
178	Current transformers. American Journal of Physics, 1986, 54, 1110-1113.	0.7	7
179	Compensated RC integrators. American Journal of Physics, 1981, 49, 479-480.	0.7	5
180	Interpreting positive Hall voltages in terms of electron rather than hole motion. American Journal of Physics, 1978, 46, 771-772.	0.7	1

#	Article	IF	CITATIONS
181	Dynamics of a rolling egg. European Journal of Physics, 0, , .	0.6	3
182	Observations of a falling ladder. European Journal of Physics, 0, , .	0.6	1
183	Four different ways that toast can fall off a table. European Journal of Physics, 0, , .	0.6	0