## Chui-Ping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111236/publications.pdf

Version: 2024-02-01

84 2,469 25 48
papers citations h-index g-index

84 84 84 1138 all docs docs citations times ranked citing authors

| #  | Article                                                                                                                                                                                                                                                                  | IF           | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Generation of an Enhanced Multiâ€Mode Optomechanicalâ€Like Quantum System and Its Application in Creating Hybrid Entangled States. Annalen Der Physik, 2022, 534, .                                                                                                      | 2.4          | 5         |
| 2  | Two-Photon Blockade with Second-Order Nonlinearity in Cavity Systems. International Journal of Theoretical Physics, 2022, 61, 1.                                                                                                                                         | 1.2          | 1         |
| 3  | Hybrid controlled-sum gate with one superconducting qutrit and one cat-state qutrit and application in hybrid entangled state preparation. Physical Review A, 2022, 105, .                                                                                               | 2.5          | 3         |
| 4  | Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Frontiers of Physics, 2022, 17, .                                                                                                              | 5.0          | 8         |
| 5  | Single-step implementation of a hybrid controlled-not gate with one superconducting qubit simultaneously controlling multiple target cat-state qubits. Physical Review A, 2022, 105, .                                                                                   | 2.5          | 7         |
| 6  | Entanglement dynamics in anti- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT</mml:mi> </mml:math> -symmetric systems. Physical Review Research, 2022, 4, .                                                                   | 3.6          | 6         |
| 7  | Transfer of quantum entangled states between superconducting qubits and microwave field qubits.<br>Frontiers of Physics, 2022, 17, .                                                                                                                                     | 5.0          | 3         |
| 8  | One-step implementation of a coherent conversion between microwave and optical cavities via an ensemble of nitrogen-vacancy centers. Physical Review A, 2021, 103, .                                                                                                     | 2.5          | 13        |
| 9  | Implementing a quantum search algorithm with nonorthogonal states. Physical Review A, 2021, 103, .                                                                                                                                                                       | 2.5          | 6         |
| 10 | Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED. Frontiers of Physics, 2021, 16, 1.                                                                                                           | 5 <b>.</b> O | 5         |
| 11 | Construction of a qudit using SchrĶdinger cat states and generation of hybrid entanglement between a discrete-variable qudit and a continuous-variable qudit. Physical Review A, 2021, 104, .                                                                            | 2.5          | 6         |
| 12 | Generation of generalized hybrid entanglement in cavity electro–optic systems. Quantum Science and Technology, 2021, 6, 025003.                                                                                                                                          | 5.8          | 24        |
| 13 | Nonadiabatic quantum state engineering by time-dependent decoherence-free subspaces in open quantum systems. New Journal of Physics, 2021, 23, 113005.                                                                                                                   | 2.9          | 10        |
| 14 | Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems. Communications Physics, 2021, 4, .                                                                                                                                                    | <b>5.</b> 3  | 17        |
| 15 | <pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -photon blockade with an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -photon parametric drive. Physical Review A. 2021, 104</pre> | 2.5          | 15        |
| 16 | Coherence and quantum Fisher information in general single-qubit parameter estimation processes. Physical Review A, 2021, 104, .                                                                                                                                         | 2.5          | 2         |
| 17 | Quantum Optical Switching Based on Local Single-excitation Resonance. International Journal of Theoretical Physics, 2020, 59, 2606-2616.                                                                                                                                 | 1.2          | 0         |
| 18 | Conventional photon blockade with a three-wave mixing. Physical Review A, 2020, 102, .                                                                                                                                                                                   | 2.5          | 23        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Preparation of entangled W states with cat-state qubits in circuit QED. Quantum Information Processing, 2020, $19, 1$ .                                                                                     | 2.2 | 8         |
| 20 | Implementing a multi-target-qubit controlled-not gate with logical qubits outside a decoherence-free subspace and its application in creating quantum entangled states. Physical Review A, 2020, 101, .     | 2.5 | 14        |
| 21 | Generation of hybrid Greenberger-Horne-Zeilinger entangled states of particlelike and wavelike optical qubits in circuit QED. Physical Review A, 2020, 101, .                                               | 2.5 | 12        |
| 22 | Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities. Physical Review A, 2020, 101, .                                                                       | 2.5 | 9         |
| 23 | One-step transfer of quantum information for a photonic cat-state qubit. Quantum Information Processing, 2020, 19, 1.                                                                                       | 2.2 | 3         |
| 24 | Transferring entangled states of photonic cat-state qubits in circuit QED. Frontiers of Physics, 2020, 15, 1.                                                                                               | 5.0 | 11        |
| 25 | Efficient scheme for creating a W-type optical entangled coherent state. Optics Express, 2020, 28, 35622.                                                                                                   | 3.4 | 6         |
| 26 | Non-Markovianity in experimentally simulated quantum channels: Role of counterrotating-wave terms. Physical Review A, 2019, 100, .                                                                          | 2.5 | 6         |
| 27 | Quantum Interface between a Superconducting Qubit and Spin Ensembles. Annalen Der Physik, 2019, 531, 1900036.                                                                                               | 2.4 | 4         |
| 28 | Experimental demonstration of quantum walks with initial superposition states. Npj Quantum Information, 2019, $5$ , .                                                                                       | 6.7 | 18        |
| 29 | Fast preparation of entangled states of two qutrits in cavity or circuit QED. Journal of Modern Optics, 2019, 66, 891-897.                                                                                  | 1.3 | 1         |
| 30 | One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Frontiers of Physics, 2019, 14, 1.                                                              | 5.0 | 21        |
| 31 | Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction. Quantum Information Processing, 2018, $17, 1$ .                                                                   | 2.2 | 4         |
| 32 | Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n â^2 1 microwave photonic qubits. Optics Express, 2018, 26, 30689. | 3.4 | 17        |
| 33 | Generalized coupling system between a superconducting qubit and two nanomechanical resonators.<br>Physical Review A, 2018, 98, .                                                                            | 2.5 | 10        |
| 34 | Multiplex-controlled phase gate with qubits distributed in a multicavity system. Physical Review A, 2018, 97, .                                                                                             | 2.5 | 14        |
| 35 | Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED. Optics Letters, 2018, 43, 5126.                                                                | 3.3 | 19        |
| 36 | Universal quantum gate with hybrid qubits in circuit quantum electrodynamics. Optics Letters, 2018, 43, 5765.                                                                                               | 3.3 | 9         |

3

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Generating double NOON states of photons in circuit QED. Physical Review A, 2017, 95, .                                                                               | 2.5 | 18        |
| 38 | Transferring multiqubit entanglement onto memory qubits in a decoherence-free subspace. Quantum Information Processing, 2017, $16, 1$ .                               | 2.2 | 2         |
| 39 | Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED. Scientific Reports, 2017, 7, 7039.                            | 3.3 | 15        |
| 40 | Universal controlled-phase gate with cat-state qubits in circuit QED. Physical Review A, 2017, 96, .                                                                  | 2.5 | 21        |
| 41 | 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. Physical Review Letters, 2017, 119, 180511.                                       | 7.8 | 313       |
| 42 | Entangling two oscillators with arbitrary asymmetric initial states. Physical Review A, 2017, 95, .                                                                   | 2.5 | 28        |
| 43 | Experimental simulation of a quantum channel without the rotating-wave approximation: testing quantum temporal steering. Optica, 2017, 4, 1065.                       | 9.3 | 15        |
| 44 | Entangling superconducting qubits in a multi-cavity system. New Journal of Physics, 2016, 18, 013025.                                                                 | 2.9 | 41        |
| 45 | Multi-target-qubit unconventional geometric phase gate in a multi-cavity system. Scientific Reports, 2016, 6, 21562.                                                  | 3.3 | 20        |
| 46 | Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators. Physical Review A, 2016, 93, .                                                 | 2.5 | 13        |
| 47 | Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Scientific Reports, 2016, 6, 32004.                                       | 3.3 | 33        |
| 48 | Transferring multipartite entanglement among different cavities. Quantum Information Processing, 2016, 15, 215-231.                                                   | 2.2 | 1         |
| 49 | One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler. Physical Review B, 2015, 92, .                                    | 3.2 | 9         |
| 50 | Quantum Delayed-Choice Experiment with a Beam Splitter in a Quantum Superposition. Physical Review Letters, 2015, 115, 260403.                                        | 7.8 | 32        |
| 51 | Scalable quantum information transfer between nitrogen-vacancy-center ensembles. Annals of Physics, 2015, 355, 170-181.                                               | 2.8 | 4         |
| 52 | Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics. Optics Letters, 2015, 40, 5602.                                                   | 3.3 | 15        |
| 53 | Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Information Processing, 2015, 14, 4461-4474. | 2.2 | 8         |
| 54 | Efficient scheme for generation of photonic NOON states in circuit QED. Optics Letters, 2015, 40, 2221.                                                               | 3.3 | 28        |

| #  | Article                                                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Controlled teleportation with the control of two groups of agents via entanglement. Quantum Information Processing, 2015, 14, 1055-1068.                                                                                                                                                                                                  | 2.2 | 15        |
| 56 | Circuit QED: implementation of the three-qubit refined Deutsch–Jozsa quantum algorithm. Quantum Information Processing, 2014, 13, 2769-2782.                                                                                                                                                                                              | 2.2 | 1         |
| 57 | Generating multipartite entangled states of qubits distributed in different cavities. Quantum Information Processing, 2014, 13, 1381-1395.                                                                                                                                                                                                | 2.2 | 9         |
| 58 | Generation of macroscopic entangled coherent states with large Josephson junctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1536-1539.                                                                                                                                                            | 2.1 | 4         |
| 59 | Controllable coupling between a charge qubit and a spin ensemble. Physical Review A, 2014, 89, .                                                                                                                                                                                                                                          | 2.5 | 1         |
| 60 | Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Optics Letters, 2014, 39, 3312.                                                                                                                                                                                             | 3.3 | 29        |
| 61 | Fast and simple scheme for generating NOON states of photons in circuit QED. Scientific Reports, 2014, 4, 3898.                                                                                                                                                                                                                           | 3.3 | 51        |
| 62 | Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Physical Review A, 2013, 87, .                                                                                                                                                                                     | 2.5 | 92        |
| 63 | Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities. New Journal of Physics, 2013, 15, 115003.                                                                                                                                                                              | 2.9 | 31        |
| 64 | Preparing Greenberger–Horne–Zeilinger Entangled Photon Fock States of Three Cavities Coupled by a Superconducting Flux Qutrit. Journal of the Physical Society of Japan, 2013, 82, 084801.                                                                                                                                                | 1.6 | 1         |
| 65 | Proposal for Implementing the Three-Qubit Refined Deutsch–Jozsa Quantum Algorithm. Journal of the Physical Society of Japan, 2013, 82, 084802.                                                                                                                                                                                            | 1.6 | 0         |
| 66 | Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Physical Review A, 2012, 86, .                                                                                                                                           | 2.5 | 70        |
| 67 | Proposal for realizing a multiqubit tunable phase gate of one qubit simultaneously controllingntarget qubits using cavity QED. Physical Review A, 2012, 86, .                                                                                                                                                                             | 2.5 | 11        |
| 68 | Preparation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math> -qubit<br>Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to<br>nonidentical qubit-cavity coupling constants. Physical Review A, 2011, 83, . | 2.5 | 29        |
| 69 | A proposal for implementing ann-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED. Journal of Physics Condensed Matter, 2011, 23, 225702.                                                                                                                                                       | 1.8 | 4         |
| 70 | Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator. Physical Review A, $2010,82,.$                                                                                                                                                                                 | 2.5 | 13        |
| 71 | Quantum information transfer with superconducting flux qubits coupled to a resonator. Physical<br>Review A, 2010, 82, .                                                                                                                                                                                                                   | 2.5 | 34        |
| 72 | Arbitrary control of coherent dynamics for distant qubits in a quantum network. Physical Review A, 2010, 82, .                                                                                                                                                                                                                            | 2.5 | 50        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Phase gate of one qubit simultaneously controlling <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math> qubits in a cavity. Physical Review A. 2010, 81                       | 2.5 | 72        |
| 74 | Multiqubit tunable phase gate of one qubit simultaneously controlling <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math> qubits in a cavity. Physical Review A, 2010, 82, . | 2.5 | 50        |
| 75 | Realization of ann-qubit controlled-Ugate with superconducting quantum interference devices or atoms in cavity QED. Physical Review A, 2006, 73, .                                                                                                    | 2.5 | 82        |
| 76 | Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction. Physical Review A, 2006, 74, .                                                                                                           | 2.5 | 27        |
| 77 | A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 343, 267-273.                                                | 2.1 | 28        |
| 78 | n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Physical Review A, 2005, 72, .                                                                                                                | 2.5 | 89        |
| 79 | Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED. Physical Review A, 2004, 70, .                                                                                                                          | 2.5 | 39        |
| 80 | A small error-correction code for protecting three-qubit quantum information. JETP Letters, 2004, 79, 236-240.                                                                                                                                        | 1.4 | 1         |
| 81 | Quantum Information Transfer and Entanglement with SQUID Qubits in Cavity QED: A Dark-State Scheme with Tolerance for Nonuniform Device Parameter. Physical Review Letters, 2004, 92, 117902.                                                         | 7.8 | 179       |
| 82 | Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Physical Review A, 2004, 70, .                                                                                                                      | 2.5 | 206       |
| 83 | Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Physical Review A, 2003, 67, .                                                           | 2.5 | 248       |
| 84 | A Proposal of Teleportation for Three-Particle Entangled State. Chinese Physics Letters, 1999, 16, 628-629.                                                                                                                                           | 3.3 | 47        |