Jillian J Kril

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111225/publications.pdf

Version: 2024-02-01

185 papers	15,626 citations	65 h-index	19190 118 g-index
187	187	187	14384
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Lipidome changes in alcoholâ€related brain damage. Journal of Neurochemistry, 2022, 160, 271-282.	3.9	4
2	Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain, 2022, 145, 1598-1609.	7.6	17
3	Globular glial tauopathy with a mutation in MAPT and unusual TDP-43 proteinopathy in a patient with behavioural-variant frontotemporal dementia. Acta Neuropathologica, 2021, 141, 791-794.	7.7	4
4	Ground state depletion microscopy as a tool for studying microglia–synapse interactions. Journal of Neuroscience Research, 2021, 99, 1515-1532.	2.9	6
5	Defining early changes in Alzheimer's disease from RNA sequencing of brain regions differentially affected by pathology. Scientific Reports, 2021, 11, 4865.	3.3	23
6	Coexisting Lewy body disease and clinical parkinsonism in amyotrophic lateral sclerosis. European Journal of Neurology, 2021, 28, 2192-2199.	3.3	6
7	Association Between Globular Glial Tauopathies and Frontotemporal Dementia—Expanding the Spectrum of Gliocentric Disorders. JAMA Neurology, 2021, 78, 1004.	9.0	16
8	Glycoprotein Pathways Altered in Frontotemporal Dementia With Autoimmune Disease. Frontiers in Immunology, 2021, 12, 736260.	4.8	2
9	Are mutations in <i>MAPT</i> associated with GGT type III?. Neuropathology and Applied Neurobiology, 2020, 46, 406-409.	3.2	4
10	Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Scientific Reports, 2020, 10, 13741.	3.3	26
11	A Practical Approach to Differentiate the Frontotemporal Tauopathy Subtypes. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1122-1126.	1.7	1
12	Re-investigating the effects of chronic smoking on the pathology of alcohol-related human brain damage. Alcohol, 2019, 76, 11-14.	1.7	3
13	CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162.	3.4	10
14	Neuroinflammation in frontotemporal dementia. Nature Reviews Neurology, 2019, 15, 540-555.	10.1	159
15	Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. International Journal of Molecular Sciences, 2019, 20, 3161.	4.1	173
16	Cellular and regional vulnerability in frontotemporal tauopathies. Acta Neuropathologica, 2019, 138, 705-727.	7.7	49
17	Coexisting Lewy body disease and clinical parkinsonism in frontotemporal lobar degeneration. Neurology, 2019, 92, e2472-e2482.	1.1	16
18	Chronic Traumatic Encephalopathy (CTE) Is Absent From a European Community-Based Aging Cohort While Cortical Aging-Related Tau Astrogliopathy (ARTAG) Is Highly Prevalent. Journal of Neuropathology and Experimental Neurology, 2019, 78, 398-405.	1.7	43

#	Article	IF	Citations
19	The underacknowledged PPA-ALS. Neurology, 2019, 92, e1354-e1366.	1.1	29
20	The relationship between the morphological subtypes of microglia and Alzheimer's disease neuropathology. Brain Pathology, 2019, 29, 726-740.	4.1	63
21	Heritability in frontotemporal tauopathies. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 115-124.	2.4	17
22	Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain, 2018, 141, 521-534.	7.6	114
23	Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain. Cerebral Cortex, 2018, 28, 3129-3142.	2.9	8
24	Imaging mass spectrometry of frontal white matter lipid changes in human alcoholics. Alcohol, 2018, 67, 51-63.	1.7	25
25	Reply: Will FTLD-tau work for all when FTDP-17 retires?. Brain, 2018, 141, e63-e63.	7.6	3
26	Impact of small vessel disease on severity of motor and cognitive impairment in Parkinson's disease. Journal of Clinical Neuroscience, 2018, 58, 70-74.	1.5	19
27	The Differential Effects of Alcohol and Nicotine-Specific Nitrosamine Ketone on White Matter Ultrastructure. Alcohol and Alcoholism, 2017, 52, 165-171.	1.6	12
28	Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neuroscience and Biobehavioral Reviews, 2017, 74, 126-138.	6.1	23
29	Response to: Comment on †Human adult neurogenesis across the ages: An immunohistochemical study'. Neuropathology and Applied Neurobiology, 2017, 43, 452-454.	3.2	2
30	Accelerated aging exacerbates a preâ€existing pathology in a tau transgenic mouse model. Aging Cell, 2017, 16, 377-386.	6.7	29
31	Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG). Journal of Neuropathology and Experimental Neurology, 2017, 76, 605-619.	1.7	38
32	Assessment of amyloid \hat{l}^2 in pathologically confirmed frontotemporal dementia syndromes. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 9, 10-20.	2.4	38
33	Cerebellar neuronal loss in amyotrophic lateral sclerosis cases with <scp>ATXN</scp> 2 intermediate repeat expansions. Annals of Neurology, 2016, 79, 295-305.	5.3	29
34	The bvFTD phenocopy syndrome: a clinicopathological report. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1155-1156.	1.9	20
35	Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Translational Psychiatry, 2016, 6, e982-e982.	4.8	123
36	TDP-43 in the hypoglossal nucleus identifies amyotrophic lateral sclerosis in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 2016, 366, 197-201.	0.6	10

#	Article	IF	CITATIONS
37	The effects of chronic smoking on the pathology of alcohol-related brain damage. Alcohol, 2016, 53, 35-44.	1.7	9
38	The NSW brain tissue resource centre: Banking for alcohol and major neuropsychiatric disorders research. Alcohol, 2016, 52, 33-39.	1.7	25
39	An International Survey of Brain Banking Operation and Characterization Practices. Biopreservation and Biobanking, 2016, 14, 464-469.	1.0	17
40	Motor cortical function determines prognosis in sporadic ALS. Neurology, 2016, 87, 513-520.	1.1	76
41	Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathology and Applied Neurobiology, 2016, 42, 621-638.	3.2	212
42	Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science, 2016, 354, 904-908.	12.6	241
43	Expanding the phenotypic associations of globular glial tau subtypes. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 4, 6-13.	2.4	23
44	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
45	Distinctive pathological mechanisms involved in primary progressiveÂaphasias. Neurobiology of Aging, 2016, 38, 82-92.	3.1	45
46	The frontotemporal dementia-motor neuron disease continuum. Lancet, The, 2016, 388, 919-931.	13.7	294
47	TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain, 2015, 138, 3110-3122.	7.6	94
48	Is the logopenic-variant of primary progressive aphasia a unitary disorder?. Cortex, 2015, 67, 122-133.	2.4	63
49	Earlyâ€onset axonal pathology in a novel <scp>P</scp> 301 <scp>S</scp> â€ <scp>T</scp> au transgenic mouse model of frontotemporal lobar degeneration. Neuropathology and Applied Neurobiology, 2015, 41, 906-925.	3.2	41
50	FTD and ALS—translating mouse studies into clinical trials. Nature Reviews Neurology, 2015, 11, 360-366.	10.1	64
51	Spread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways. Acta Neuropathologica Communications, 2015, 3, 47.	5. 2	69
52	Cortical Function in Asymptomatic Carriers and Patients With <i>C9orf72</i> Amyotrophic Lateral Sclerosis. JAMA Neurology, 2015, 72, 1268.	9.0	74
53	The alternative splicing of the apolipoprotein E gene is unperturbed in the brains of Alzheimer's disease patients. Molecular Biology Reports, 2014, 41, 6365-6376.	2.3	13
54	Comorbidities, Confounders, and the White Matter Transcriptome in Chronic Alcoholism. Alcoholism: Clinical and Experimental Research, 2014, 38, 994-1001.	2.4	19

#	Article	IF	CITATIONS
55	Using Autopsy Brain Tissue to Study Alcohol-Related Brain Damage in the Genomic Age. Alcoholism: Clinical and Experimental Research, 2014, 38, 1-8.	2.4	35
56	Microglial proliferation in the brain of chronic alcoholics with hepatic encephalopathy. Metabolic Brain Disease, 2014, 29, 1027-1039.	2.9	52
57	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
58	Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer's disease pathogenesis. Acta Neuropathologica Communications, 2014, 2, 9.	5.2	138
59	Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. Brain, 2014, 137, 2065-2076.	7.6	50
60	Human alcohol-related neuropathology. Acta Neuropathologica, 2014, 127, 71-90.	7.7	310
61	New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 865-870.	1.9	195
62	Neuropathology of alcoholism. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 125, 603-615.	1.8	107
63	Distribution of Pathology in Frontal Variant Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 39, 63-70.	2.6	53
64	Classification of FTLD-TDP cases into pathological subtypes using antibodies against phosphorylated and non-phosphorylated TDP43. Acta Neuropathologica Communications, 2013, 1, 33.	5.2	48
65	The pathogenesis of cingulate atrophy in behavioral variant frontotemporal dementia and Alzheimer's disease. Acta Neuropathologica Communications, 2013, 1, 30.	5.2	17
66	The effects of chronic alcoholism on cell proliferation in the human brain. Experimental Neurology, 2013, 247, 9-18.	4.1	34
67	Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiology of Aging, 2013, 34, 2235.e11-2235.e13.	3.1	13
68	Increased Apolipoprotein D Dimer Formation in Alzheimer's Disease Hippocampus is Associated with Lipid Conjugated Diene Levels. Journal of Alzheimer's Disease, 2013, 35, 475-486.	2.6	22
69	In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer's disease. Brain, 2012, 135, 3015-3025.	7.6	157
70	Histological assessment of cerebellar granule cell layer in postmortem brain; a useful marker of tissue integrity?. Cell and Tissue Banking, 2012, 13, 521-527.	1.1	12
71	Smallâ€vessel disease in patients with Parkinson's disease: A clinicopathological study. Movement Disorders, 2012, 27, 1506-1512.	3.9	49
72	Multiple Biological Pathways Link Cognitive Lifestyle to Protection from Dementia. Biological Psychiatry, 2012, 71, 783-791.	1.3	83

#	Article	IF	Citations
73	Neuroanatomy and Neuropathology Associated with Korsakoff's Syndrome. Neuropsychology Review, 2012, 22, 72-80.	4.9	72
74	Influence of Liver Pathology on Markers of Postmortem Brain Tissue Quality. Alcoholism: Clinical and Experimental Research, 2012, 36, 55-60.	2.4	13
75	Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease. PLoS ONE, 2012, 7, e35678.	2.5	82
76	Knowing Me, Knowing You: Can a Knowledge of Risk Factors for Alzheimer's Disease Prove Useful in Understanding the Pathogenesis of Parkinson's Disease?. Journal of Alzheimer's Disease, 2011, 25, 395-415.	2.6	24
77	Overview and recent advances in neuropathology. Part 2: Neurodegeneration. Pathology, 2011, 43, 93-102.	0.6	7
78	Understanding the pathogenesis of Alzheimer $\hat{a} \in \mathbb{N}$ s disease: will RNA $\hat{a} \in \mathbb{S}$ eq realize the promise of transcriptomics?. Journal of Neurochemistry, 2011, 116, 937-946.	3.9	65
79	Pathological Staging of Frontotemporal Lobar Degeneration. Journal of Molecular Neuroscience, 2011, 45, 379-383.	2.3	26
80	Cortical atrophy differentiates Richardson's syndrome from the parkinsonian form of progressive supranuclear palsy. Movement Disorders, 2011, 26, 256-263.	3.9	43
81	Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archives of Neurology, 2011, 68, 488.	4.5	108
82	Clinical phenotypes in autopsy-confirmed Pick disease. Neurology, 2011, 76, 253-259.	1.1	42
83	Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons. PLoS ONE, 2011, 6, e22850.	2.5	91
84	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
85	FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 120, 33-41.	7.7	222
86	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
87	The case of a 48 year-old woman with bizarre and complex delusions. Nature Reviews Neurology, 2010, 6, 175-179.	10.1	24
88	Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13888-13893.	7.1	237
89	Very early-onset frontotemporal dementia with no family history predicts underlying fused in sarcoma pathology. Brain, 2010, 133, e158-e158.	7.6	13
90	Phosphorylation of soluble tau differs in Pick's disease and Alzheimer's disease brains. Journal of Neural Transmission, 2009, 116, 1243-1251.	2.8	35

#	Article	IF	Citations
91	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
92	pH measurement as quality control on human <i>post mortem</i> brain tissue: a study of the BrainNet Europe consortium. Neuropathology and Applied Neurobiology, 2009, 35, 329-337.	3.2	93
93	White matter loss in healthy ageing: A postmortem analysis. Neurobiology of Aging, 2009, 30, 1288-1295.	3.1	62
94	The neural basis of semantic memory: Evidence from semantic dementia. Neurobiology of Aging, 2009, 30, 2043-2052.	3.1	47
95	Alzheimer disease neuropathology in the oldest old. Nature Reviews Neurology, 2009, 5, 411-412.	10.1	9
96	Frontotemporal dementia and dementia with Lewy bodies in a case-control study of Alzheimer's disease. International Psychogeriatrics, 2009, 21, 688-695.	1.0	16
97	Variable phenotype of Alzheimer's disease with spastic paraparesis. Journal of Neurochemistry, 2008, 104, 573-583.	3.9	54
98	Neuropathologic correlates of white matter hyperintensities. Neurology, 2008, 71, 804-811.	1.1	291
99	Nutritional deficiencies, metabolic disorders and toxins affecting the nervous system., 2008,, 675-731.		6
100	Clinical Significance of Lobar Atrophy in Frontotemporal Dementia: Application of an MRI Visual Rating Scale. Dementia and Geriatric Cognitive Disorders, 2007, 23, 334-342.	1.5	150
101	Tau isoform expression in frontotemporal dementia without tau deposition. Journal of Clinical Neuroscience, 2007, 14, 1182-1185.	1.5	7
102	Clinicopathological Findings of Suicide in the Elderly: Three Cases. Suicide and Life-Threatening Behavior, 2007, 37, 648-658.	1.9	13
103	Differences in regional brain atrophy in genetic forms of Alzheimer's disease. Neurobiology of Aging, 2006, 27, 387-393.	3.1	31
104	Neuropathology in the S305S tau gene mutation. Brain, 2006, 129, E40-E40.	7.6	17
105	Ubiquitin-positive inclusions and progression of pathology in frontotemporal dementia and motor neurone disease identifies a group with mainly early pathology. Neuropathology and Applied Neurobiology, 2006, 32, 83-91.	3.2	27
106	Contributions of age and alcohol consumption to cerebellar integrity, gait and cognition in non-demented very old individuals. European Archives of Psychiatry and Clinical Neuroscience, 2006, 256, 504-511.	3.2	21
107	Predicting memory performance in normal ageing using different measures of hippocampal size. Neuroradiology, 2006, 48, 90-99.	2.2	21
108	Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain, 2006, 129, 3124-3126.	7.6	91

#	Article	IF	Citations
109	Progression in Frontotemporal Dementia. Archives of Neurology, 2006, 63, 1627.	4.5	189
110	Preserved Cognition and Functional Independence after a Large Right Posterior Cerebral Artery Infarct: Longitudinal Clinical and Neuropathological Findings. Neurocase, 2006, 12, 81-90.	0.6	4
111	High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Human Brain Mapping, 2005, 24, 206-215.	3.6	217
112	Pick bodies in a family with presenilin-1 Alzheimer's disease. Annals of Neurology, 2005, 57, 139-143.	5. 3	60
113	Staging disease severity in movement disorder tauopathies: Brain atrophy separates progressive supranuclear palsy from corticobasal degeneration. Movement Disorders, 2005, 20, 34-39.	3.9	22
114	The pathological basis of semantic dementia. Brain, 2005, 128, 1984-1995.	7.6	313
115	Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain, 2005, 128, 597-605.	7.6	167
116	Distribution of brain atrophy in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 2005, 232, 83-90.	0.6	78
117	Variable Phenotype of Alzheimer's Disease with Spastic Paraparesis. Research and Perspectives in Alzheimer's Disease, 2005, , 73-92.	0.1	1
118	Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain, 2004, 127, 2214-2220.	7.6	93
119	Clinicopathological Staging of Frontotemporal Dementia Severity: Correlation with Regional Atrophy. Dementia and Geriatric Cognitive Disorders, 2004, 17, 311-315.	1.5	83
120	Histocompatibility antigens, aspirin use and cognitive performance in non-demented elderly subjects. Journal of Neuroimmunology, 2004, 148, 178-182.	2.3	18
121	Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathologica, 2004, 108, 515-523.	7.7	105
122	Clinicopathological correlates in frontotemporal dementia. Annals of Neurology, 2004, 56, 399-406.	5.3	549
123	Positional effects of presenilin-1 mutations on tau phosphorylation in cortical plaques. Neurobiology of Disease, 2004, 15, 115-119.	4.4	33
124	Relationship between hippocampal volume and CA1 neuron loss in brains of humans with and without Alzheimer's disease. Neuroscience Letters, 2004, 361, 9-12.	2.1	53
125	Identifying severely atrophic cortical subregions in Alzheimer's disease. Neurobiology of Aging, 2003, 24, 797-806.	3.1	61
126	In vivo identification of human cortical areas using high-resolution MRI: An approach to cerebral structure-function correlation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2981-2986.	7.1	138

#	Article	IF	CITATIONS
127	Severity of gliosis in Pick's disease and frontotemporal lobar degeneration: tau-positive glia differentiate these disorders. Brain, 2003, 126, 827-840.	7.6	78
128	Use of multiple cytometric markers improves discrimination between benign and malignant melanocytic lesions. Melanoma Research, 2003, 13, 581-586.	1.2	16
129	Alzheimer's disease with spastic paraparesis and 'cotton wool' plaques: two pedigrees with PS-1 exon 9 deletions. Brain, 2003, 126, 783-791.	7.6	51
130	Argyrophilic Staining of Nucleolar Organizer Region Count and Morphometry in Benign and Malignant Melanocytic Lesions. American Journal of Dermatopathology, 2003, 25, 190-197.	0.6	27
131	Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology, 2003, 60, 1005-1011.	1.1	247
132	Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 747-751.	1.9	116
133	Neuron loss from the hippocampus of Alzheimer's disease exceeds extracellular neurofibrillary tangle formation. Acta Neuropathologica, 2002, 103, 370-376.	7.7	159
134	Consensus neuropathological diagnosis of common dementia syndromes: testing and standardising the use of multiple diagnostic criteria. Acta Neuropathologica, 2002, 104, 72-78.	7.7	54
135	Subcortical Vascular Disease and Functional Decline: A 6â€Year Predictor Study. Journal of the American Geriatrics Society, 2002, 50, 1969-1977.	2.6	60
136	Variable phenotype of Alzheimer's disease with spastic paraparesis. Annals of Neurology, 2001, 49, 125-129.	5.3	90
137	A Zonal Comparison of MIB1-Ki67 Immunoreactivity in Benign and Malignant Melanocytic Lesions. American Journal of Dermatopathology, 2000, 22, 489-495.	0.6	125
138	Alzheimer's Disease And Inflammation: A Review Of Cellular And Therapeutic Mechanisms. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 1-8.	1.9	174
139	Practical measures to simplify the Braak tangle staging method for routine pathological screening. Acta Neuropathologica, 2000, 99, 199-208.	7.7	42
140	Effect of Anti-inflammatory Medications on Neuropathological Findings in Alzheimer Disease. Archives of Neurology, 2000, 57, 831.	4.5	69
141	Specific temporoparietal gyral atrophy reflects the pattern of language dissolution in Alzheimer's disease. Brain, 1999, 122, 675-686.	7.6	87
142	Method of melanin bleaching in MIB1-Ki67 immunostaining of pigmented lesions: A quantitative evaluation in malignant melanomas. The Histochemical Journal, 1999, 31, 237-240.	0.6	11
143	Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke's encephalopathy. Neuroscience, 1999, 91, 429-438.	2.3	167
144	Brain shrinkage in alcoholics: a decade on and what have we learned?. Progress in Neurobiology, 1999, 58, 381-387.	5.7	172

#	Article	IF	Citations
145	Variation in hippocampal neuron number with age and brain volume. Cerebral Cortex, 1998, 8, 710-718.	2.9	96
146	Two novel presenilin-1 mutations (Ser169Leu and Pro436Gln) associated with very early onset Alzheimer \hat{E}^{1}_{4} s disease. NeuroReport, 1998, 9, 3335-3339.	1.2	68
147	The nucleus basalis (Ch4) in the alcoholic Wernicke-Korsakoff syndrome: reduced cell number in both amnesic and non-amnesic patients. Journal of Neurology, Neurosurgery and Psychiatry, 1997, 63, 315-320.	1.9	41
148	Operational criteria for the classification of chronic alcoholics: identification of Wernicke's encephalopathy Journal of Neurology, Neurosurgery and Psychiatry, 1997, 62, 51-60.	1.9	373
149	Language-Associated Cortical Regions Are Proportionally Larger in the Female Brain. Archives of Neurology, 1997, 54, 171-176.	4.5	224
150	The cerebral cortex is damaged in chronic alcoholics. Neuroscience, 1997, 79, 983-998.	2.3	474
151	Concentrations of transferrin and carbohydrate-deficient transferrin in postmortem human brain from alcoholics. Addiction Biology, 1997, 2, 337-348.	2.6	4
152	Distinctive pattern of Bergmann glial pathology in human hepatic encephalopathy. Molecular and Chemical Neuropathology, 1997, 31, 279-287.	1.0	21
153	Diencephalic and cerebellar pathology in alcoholic and nonalcoholic patients with end-stage liver disease. Hepatology, 1997, 26, 837-841.	7.3	98
154	Chronic alcohol consumption does not cause hippocampal neuron loss in humans., 1997, 7, 78-87.		148
155	Topography of brain atrophy during normal aging and alzheimer's disease. Neurobiology of Aging, 1996, 17, 513-521.	3.1	170
156	Glial fibrillary acidic protein (GFAP) immunohistochemistry in human cortex: a quantitative study using different antisera. Neuroscience Letters, 1996, 209, 29-32.	2.1	48
157	Loss of vasopressin-immunoreactive neurons in alcoholics is dose-related and time-dependent. Neuroscience, 1996, 72, 699-708.	2.3	137
158	Improved Selectivity and Sensitivity in the Visualization of Neurofibrillary Tangles, Plaques and Neuropil Threads. Experimental Neurology, 1996, 5, 177-187.	1.7	19
159	Neuropathology of thiamine deficiency disorders. Metabolic Brain Disease, 1996, 11, 9-17.	2.9	94
160	Chronic alcoholism in the absence of Wernicke-Korsakoff syndrome and cirrhosis does not result in the loss of serotonergic neurons from the median raphe nucleus. Metabolic Brain Disease, 1996, 11, 217-227.	2.9	12
161	Receptor binding sites and uptake activities mediating GABA neurotransmission in chronic alcoholics with Wernicke encephalopathy. Brain Research, 1996, 710, 215-228.	2.2	24
162	Chronic Alcoholics without Wernicke-Korsakoff Syndrome or Cirrhosis Do Not Lose Serotonergic Neurons in the Dorsal Raphe Nucleus. Alcoholism: Clinical and Experimental Research, 1996, 20, 61-66.	2.4	30

#	Article	IF	CITATIONS
163	Microwave Modification of the Methenamine Silver Technique for the Demonstration of Alzheimer-Type Pathology. Journal of Histotechnology, 1996, 19, 33-38.	0.5	4
164	Motor neuron disease: A primary disorder of corticomotoneurons?. Muscle and Nerve, 1995, 18, 314-318.	2.2	50
165	Reservations on the motor unit number estimates based on the automated analysis of F-responses. Muscle and Nerve, 1995, 18, 1074-1081.	2.2	2
166	The contribution of alcohol, thiamine deficiency and cirrhosis of the liver to cerebral cortical damage in alcoholics. Metabolic Brain Disease, 1995, 10, 9-16.	2.9	26
167	Thiamine-Dependent Enzyme Changes in the Brains of Alcoholics: Relationship to the Wernicke-Korsakoff Syndrome. Alcoholism: Clinical and Experimental Research, 1993, 17, 1084-1088.	2.4	171
168	Neuronal Changes in the Cerebral Cortex of the Rat Following Alcohol Treatment and Thiamin Deficiency. Journal of Neuropathology and Experimental Neurology, 1993, 52, 586-593.	1.7	32
169	Amino Acid Neurotransmitter Receptor Changes in Cerebral Cortex in Alcoholism: Effect of Cirrhosis of the Liver. Journal of Neurochemistry, 1992, 59, 1506-1515.	3.9	61
170	Brain and Liver Dolichol in Chronic Alcoholism: A Necropsy Study. Alcoholism: Clinical and Experimental Research, 1990, 14, 528-530.	2.4	6
171	The contribution of Wernicke's encephalopathy to alcohol-related cerebellar damage. Drug and Alcohol Review, 1990, 9, 53-60.	2.1	27
172	The changing face of the Wernicke-Korsakoff syndrome. Drug and Alcohol Review, 1990, 9, 299-301.	2.1	7
173	NEUROPATHOLOGY OF ALCOHOLISM. Alcohol and Alcoholism, 1990, 25, 207-216.	1.6	205
174	Progression of neurological disease in thiamin-deficient rats is enhanced by ethanol. Alcohol, 1990, 7, 493-501.	1.7	35
175	The effects of alcohol on the female brain: a neuropathological study. Alcohol and Alcoholism, 1990, 25, 445-8.	1.6	27
176	Cerebral lipids and alcohol abuse in humans. Australian Drug and Alcohol Review, 1989, 8, 69-77.	0.1	3
177	Cortical dihydrophyridine binding sites are unaltered in human alcoholic brain. Annals of Neurology, 1989, 26, 395-397.	5.3	21
178	Neuronal counts from four cortical regions of alcoholic brains. Acta Neuropathologica, 1989, 79, 200-204.	7.7	138
179	Patterns of neuronal loss in the cerebral cortex in chronic alcoholic patients. Journal of the Neurological Sciences, 1989, 92, 81-89.	0.6	147
180	Corpus Callosal Thickness in Alcoholics. Addiction, 1988, 83, 577-580.	3.3	48

#	Article	IF	CITATIONS
181	Brain shrinkage in alcoholics is not caused by changes in hydration: a pathological study Journal of Neurology, Neurosurgery and Psychiatry, 1988, 51, 124-127.	1.9	52
182	Necropsy study of GABA/benzodiazepine receptor binding sites in brain tissue from chronic alcoholic patients. Clinical and Experimental Neurology, 1988, 25, 135-41.	0.0	9
183	A QUANTITATIVE HISTOLOGICAL STUDY OF THE CEREBELLAR VERMIS IN ALCOHOLIC PATIENTS. Brain, 1987, 110, 301-314.	7.6	152
184	The Specific Gravity of the Brains of Alcoholic and Control Patients: a pathological study. Addiction, 1987, 82, 1349-1354.	3.3	15
185	Brain shrinkage in chronic alcoholics: a pathological study BMJ: British Medical Journal, 1985, 290, 501-504.	2.3	186