Sunliang Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111050/publications.pdf Version: 2024-02-01

SUNLIANC CUI

#	Article	IF	CITATIONS
1	Rh(iii)-catalyzed C–H activation/[4 + 3] cycloaddition of benzamides and vinylcarbenoids: facile synthesis of azepinones. Chemical Science, 2013, 4, 3912.	7.4	252
2	Rh(iii)-catalyzed C–H activation/cycloaddition of benzamides and methylenecyclopropanes: divergence in ring formation. Chemical Science, 2013, 4, 3421.	7.4	204
3	Rh(III)-Catalyzed C–H Activation/Cyclization of Indoles and Pyrroles: Divergent Synthesis of Heterocycles. Journal of Organic Chemistry, 2014, 79, 6490-6500.	3.2	155
4	Divergent Syntheses of 2-Aminonicotinonitriles and Pyrazolines by Copper-Catalyzed Cyclization of Oxime Ester. Organic Letters, 2014, 16, 1350-1353.	4.6	129
5	Fe-Catalyzed Hydroalkylation of Olefins with <i>para</i> -Quinone Methides. Organic Letters, 2016, 18, 2722-2725.	4.6	127
6	Rh(III)-Catalyzed Selective Coupling of <i>N</i> -Methoxy-1 <i>H</i> -indole-1-carboxamides and Aryl Boronic Acids. Organic Letters, 2014, 16, 3560-3563.	4.6	104
7	Silver(I)-Mediated Phosphorylation/Cyclization Cascade of <i>N</i> -Cyanamide Alkenes for Divergent Access to Quinazolinones and Dihydroisoquinolinones. Organic Letters, 2016, 18, 1768-1771.	4.6	94
8	Facile Synthesis of Isoindolinones via Rh(III)-Catalyzed One-Pot Reaction of Benzamides, Ketones, and Hydrazines. Organic Letters, 2015, 17, 2494-2497.	4.6	91
9	Rh(<scp>iii</scp>)-catalyzed C–H activation–desymmetrization of diazabicycles with arenes: facile synthesis of functionalized cyclopentenes. Chemical Science, 2014, 5, 297-302.	7.4	81
10	Copper atalyzed Divergent Trifluoromethylation/Cyclization of Unactivated Alkenes. Advanced Synthesis and Catalysis, 2016, 358, 746-751.	4.3	81
11	Rh(III)-Catalyzed C–H Activation/Cyclization of Benzamides and Diazonaphthalen-2(1 <i>H</i>)-ones for Synthesis of Lactones. Organic Letters, 2017, 19, 4002-4005.	4.6	79
12	Oneâ€Pot Multicomponent Synthesis of βâ€Amino Amides. Angewandte Chemie - International Edition, 2017, 56, 4565-4568.	13.8	72
13	Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with Î ² -Nitroalkenes. Organic Letters, 2015, 17, 4572-4575.	4.6	65
14	Metathesis Reaction of Diazo Compounds and <i>para</i> -Quinone Methides for C–C Double Bond Formation: Synthesis of Tetrasubstituted Alkenes and Quinolinones. Organic Letters, 2016, 18, 4888-4891.	4.6	63
15	Fe-Catalyzed Olefin Hydroamination with Diazo Compounds for Hydrazone Synthesis. Organic Letters, 2016, 18, 128-131.	4.6	60
16	Copperâ€Catalyzed Threeâ€Component Synthesis of 2â€Iminodihydrocoumarins and 2â€Iminocoumarins. Advanced Synthesis and Catalysis, 2010, 352, 1139-1144.	4.3	54
17	Synthesis of Amides and Nitriles from Vinyl Azides and <i>p</i> Quinone Methides. Journal of Organic Chemistry, 2017, 82, 3950-3956.	3.2	52
18	Combating Drug-Resistant Mutants of Anaplastic Lymphoma Kinase with Potent and Selective Type-I ^{1/2} Inhibitors by Stabilizing Unique DFG-Shifted Loop Conformation. ACS Central Science, 2017, 3, 1208-1220.	11.3	42

SUNLIANG CUI

#	Article	IF	CITATIONS
19	Fe(III)-Catalyzed Hydroallylation of Unactivated Alkenes with Morita–Baylis–Hillman Adducts. Organic Letters, 2018, 20, 1355-1358.	4.6	42
20	Csp–Csp ³ Bond Formation via Iron(III)-Promoted Hydroalkynylation of Unactivated Alkenes. Organic Letters, 2017, 19, 1744-1747.	4.6	41
21	Multicomponent Synthesis of Tetrahydroisoquinolines. Organic Letters, 2018, 20, 3460-3464.	4.6	41
22	Single Reactant Replacement Approach of Passerini Reaction: One-Pot Synthesis of β-Acyloxyamides and Phthalides. Organic Letters, 2017, 19, 4616-4619.	4.6	40
23	Directing-Group-Enabled Cycloaddition of Azides and Alkynes toward Functionalized Triazoles. Organic Letters, 2020, 22, 2220-2224.	4.6	37
24	Iterative Assembly of Nitrile Oxides and Ynamides: Synthesis of Isoxazoles and Pyrroles. Journal of Organic Chemistry, 2019, 84, 12157-12164.	3.2	35
25	Rh(<scp>iii</scp>)-catalyzed C–H activation/cyclization of oximes with alkenes for regioselective synthesis of isoquinolines. Organic and Biomolecular Chemistry, 2016, 14, 6201-6204.	2.8	33
26	Decarbonylative Coupling of α-Keto Acids and Ynamides for Synthesis of β-Keto Imides. Organic Letters, 2018, 20, 3377-3380.	4.6	32
27	Iridiumâ€Catalyzed Hydroxylâ€Enabled Cycloaddition of Azides and Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 989-994.	4.3	31
28	1,4-Conjugate addition/esterification of <i>ortho</i> -quinone methides in a multicomponent reaction. Chemical Communications, 2018, 54, 11753-11756.	4.1	29
29	Skeletal reorganization divergence of N-sulfonyl ynamides. Nature Communications, 2020, 11, 5639.	12.8	26
30	A silver catalyzed domino reaction of <i>N</i> -cyanamide alkenes and 1,3-dicarbonyls for the synthesis of quinazolinones. Organic and Biomolecular Chemistry, 2018, 16, 5899-5906.	2.8	23
31	Reductive coupling of alkenes with unsaturated imines <i>via</i> a radical pathway. Organic Chemistry Frontiers, 2019, 6, 2760-2764.	4.5	22
32	Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of l²â€Amino Amides. Angewandte Chemie - International Edition, 2021, 60, 5147-5151.	13.8	22
33	Synthesis and antiproliferative evaluation of 2-hydroxylated (E)-stilbenes. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5470-5472.	2.2	21
34	Facile synthesis of carbo- and heterocycles <i>via</i> Fe(<scp>iii</scp>)-catalyzed alkene hydrofunctionalization. Organic Chemistry Frontiers, 2018, 5, 222-225.	4.5	20
35	Cascade reaction involving Diels–Alder cascade: modular synthesis of amino α-pyrones, indolines and anilines. Organic Chemistry Frontiers, 2018, 5, 3574-3578.	4.5	20
36	Multicomponent Ugi Reaction of Indole-N-carboxylic Acids: Expeditious Access to Indole Carboxamide Amino Amides. Organic Letters, 2019, 21, 5269-5272.	4.6	20

SUNLIANG CUI

#	Article	IF	CITATIONS
37	Fe(<scp>iii</scp>)-mediated isomerization of α,α-diarylallylic alcohols to ketones via radical 1,2-aryl migration. RSC Advances, 2016, 6, 93753-93755.	3.6	18
38	One-Pot Reaction of Carboxylic Acids and Ynol Ethers for The Synthesis of Î ² -Keto Esters. Journal of Organic Chemistry, 2018, 83, 14834-14841.	3.2	17
39	Metal-free α-alkylation of alcohols with <i>para</i> -quinone methides. Organic and Biomolecular Chemistry, 2018, 16, 2762-2767.	2.8	16
40	Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharmaceutica Sinica B, 2021, 11, 3567-3584.	12.0	16
41	Rhodium atalyzed Atroposelective Click Cycloaddition of Azides and Alkynes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
42	Discovery of 3,6-diaryl-1H-pyrazolo[3,4-b]pyridines as potent anaplastic lymphoma kinase (ALK) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 912-916.	2.2	14
43	Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Current Medicinal Chemistry, 2021, 28, 2807-2827.	2.4	14
44	Multicomponent double Mannich alkylamination involving C(sp2)–H and benzylic C(sp3)–H bonds. Nature Communications, 2022, 13, 435.	12.8	14
45	Coupling of Carboxylic Acids with Ynamides and Subsequent Rearrangement for the Synthesis of Imides/Amides. Organic Letters, 2018, 20, 5194-5197.	4.6	13
46	SuFExable Isocyanides for Ugi Reaction: Synthesis of Sulfonyl Fluoro Peptides. Organic Letters, 2021, 23, 5197-5202.	4.6	13
47	One-Pot Reaction of Carboxylic Acids, Ynol Ethers, and <i>m</i> -CPBA for Synthesis of α-Carbonyloxy Esters. Organic Letters, 2019, 21, 6423-6426.	4.6	12
48	Indole―N â€Carboxylic Acids and Indole―N â€Carboxamides in Organic Synthesis. Chemistry - an Asian Journal, 2020, 15, 973-985.	3.3	12
49	Oneâ€Pot Multicomponent Synthesis of βâ€Amino Amides. Angewandte Chemie, 2017, 129, 4636-4639.	2.0	10
50	Nickel-catalyzed acetamidation and lactamization of arylboronic acids. Chemical Communications, 2017, 53, 11996-11999.	4.1	10
51	BF3-promoted annulation of azonaphthalenes and ynamides for synthesis of benzo[e]indoles. Chinese Chemical Letters, 2021, 32, 421-424.	9.0	9
52	Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. Journal of Medicinal Chemistry, 2022, 65, 3849-3865.	6.4	9
53	Redox Cyclization of Amides and Sulfonamides with Nitrous Oxide for Direct Synthesis of Heterocycles. Organic Letters, 2020, 22, 2017-2021.	4.6	8
54	Discovery of <i>N</i> -(4-(Benzyloxy)-phenyl)-sulfonamide Derivatives as Novel Antagonists of the Human Androgen Receptor Targeting the Activation Function 2. Journal of Medicinal Chemistry, 2022, 65, 2507-2521.	6.4	8

SUNLIANG CUI

#	Article	IF	CITATIONS
55	Photo-induced synthesis of β-sulfonyl imides from carboxylic acids. Chemical Communications, 2021, 57, 6792-6795.	4.1	5
56	Facile Synthesis of γ-Butenolides and Maleic Anhydrides via Annulation of α-Keto Acids and Triazenyl Alkynes. Journal of Organic Chemistry, 2022, , .	3.2	5
57	Iridium(<scp>i</scp>)-catalyzed hydration/esterification of 2-alkynylphenols and carboxylic acids. Chemical Communications, 2020, 56, 3093-3096.	4.1	4
58	Rhodium atalyzedÂAtroposelective Click Cycloaddition of Azides and Alkynes. Angewandte Chemie, 0, , .	2.0	4
59	Homologation of Ugi and Passerini reactions using ynamides. Drug Discovery Today: Technologies, 2018, 29, 43-49.	4.0	3
60	Oxoarylation of ynamides with N-aryl hydroxamic acids. Chinese Chemical Letters, 2021, 32, 2551-2554.	9.0	3
61	An Integrated Building Block for Cascade Diels–Alder and Hetero-Diels–Alder Reactions. Organic Letters, 2022, 24, 2689-2693.	4.6	3
62	Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of βâ€Amino Amides. Angewandte Chemie, 2021, 133, 5207-5211.	2.0	2
63	Three Component Synthesis of β‑Aminoxy Amides. Organic Chemistry Frontiers, 0, , .	4.5	2