Yuan Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2110896/publications.pdf

Version: 2024-02-01

218677 3,785 47 26 citations papers

44 h-index g-index 47 4772 citing authors

243625

47 47 all docs docs citations

times ranked

#	Article	IF	CITATIONS
1	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4, 864-873.	39.5	736
2	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	39.5	497
3	Simultaneous Contact and Grainâ€Boundary Passivation in Planar Perovskite Solar Cells Using SnO ₂ â€KCl Composite Electron Transport Layer. Advanced Energy Materials, 2020, 10, 1903083.	19.5	323
4	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbl ₃ Perovskite. Angewand Chemie - International Edition, 2021, 60, 16164-16170.	ite 13.8	210
5	Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells. Advanced Materials, 2020, 32, e1907392.	21.0	203
6	Stimulated Emission and Lasing from CdSe/CdS/ZnS Coreâ€Multiâ€Shell Quantum Dots by Simultaneous Threeâ€Photon Absorption. Advanced Materials, 2014, 26, 2954-2961.	21.0	172
7	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	11.2	146
8	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Science Advances, 2020, 6, .	10.3	135
9	High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices. Scientific Reports, 2016, 6, 36733.	3.3	134
10	Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nature Communications, 2020, 11, 3674.	12.8	112
11	Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 2019, 7, 2275-2282.	10.3	105
12	High-Performance Blue Molecular Emitter-Free and Doping-Free Hybrid White Organic Light-Emitting Diodes: an Alternative Concept To Manipulate Charges and Excitons Based on Exciplex and Electroplex Emission. ACS Photonics, 2017, 4, 1566-1575.	6.6	73
13	Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells. ACS Nano, 2019, 13, 10662-10670.	14.6	71
14	Extremely Simplified, High-Performance, and Doping-Free White Organic Light-Emitting Diodes Based on a Single Thermally Activated Delayed Fluorescent Emitter. ACS Energy Letters, 2018, 3, 1531-1538.	17.4	70
15	Solution-Processed Monolithic All-Perovskite Triple-Junction Solar Cells with Efficiency Exceeding 20%. ACS Energy Letters, 2020, 5, 2819-2826.	17.4	69
16	Efficient and Stable Thinâ€Film Luminescent Solar Concentrators Enabled by Nearâ€Infrared Emission Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 7738-7742.	13.8	64
17	Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy, 2018, 47, 115-122.	16.0	62
18	Steric Engineering Enables Efficient and Photostable Wideâ€Bandgap Perovskites for Allâ€Perovskite Tandem Solar Cells. Advanced Materials, 2022, 34, e2110356.	21.0	48

#	Article	IF	CITATIONS
19	Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling highâ€Q microlasers. Laser and Photonics Reviews, 2015, 9, 507-516.	8.7	44
20	Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Nanoscale, 2018, 10, 9466-9475.	5 . 6	43
21	Electroâ€Optic Modulation in Hybrid Metal Halide Perovskites. Advanced Materials, 2019, 31, e1808336.	21.0	42
22	Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters. Journal of Physical Chemistry Letters, 2014, 5, 2802-2807.	4.6	41
23	Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission. Applied Physics Letters, 2017, 110, .	3.3	39
24	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy., 2020, 2, 814-820.		33
25	Coreless Fiberâ€Based Whisperingâ€Galleryâ€Mode Assisted Lasing from Colloidal Quantum Well Solids. Advanced Functional Materials, 2020, 30, 1907417.	14.9	31
26	Deepâ€Blue Perovskite Singleâ€Mode Lasing through Efficient Vaporâ€Assisted Chlorination. Advanced Materials, 2021, 33, e2006697.	21.0	30
27	Efficient Energy Transfer under Twoâ€Photon Excitation in a 3D, Supramolecular, Zn(II) oordinated, Selfâ€Assembled Organic Network. Advanced Optical Materials, 2014, 2, 40-47.	7.3	29
28	Quantum Dot Selfâ€Assembly Enables Lowâ€Threshold Lasing. Advanced Science, 2021, 8, e2101125.	11.2	28
29	Observation of polarized gain from aligned colloidal nanorods. Nanoscale, 2015, 7, 6481-6486.	5 . 6	24
30	Thermally Stable Allâ€Perovskite Tandem Solar Cells Fully Using Metal Oxide Charge Transport Layers and Tunnel Junction. Solar Rrl, 2021, 5, 2100814.	5. 8	24
31	Linear Electroâ€Optic Modulation in Highly Polarizable Organic Perovskites. Advanced Materials, 2021, 33, e2006368.	21.0	20
32	Azimuthally Polarized, Circular Colloidal Quantum Dot Laser Beam Enabled by a Concentric Grating. ACS Photonics, 2016, 3, 2255-2261.	6.6	18
33	Polarization-Resolved Plasmon-Modulated Emissions of Quantum Dots Coupled to Aluminum Dimers with Sub-20 nm Gaps. ACS Photonics, 2018, 5, 1566-1574.	6.6	17
34	Record Photocurrent Density over 26 mA cm â^'2 in Planar Perovskite Solar Cells Enabled by Antireflective Cascaded Electron Transport Layer. Solar Rrl, 2020, 4, 2000169.	5.8	17
35	Engineering Quantum Dots with Different Emission Wavelengths and Specific Fluorescence Lifetimes for Spectrally and Temporally Multiplexed Imaging of Cells. Nanotheranostics, 2017, 1, 131-140.	5.2	15
36	Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots. Journal of Physical Chemistry Letters, 2016, 7, 2772-2778.	4.6	12

#	Article	IF	CITATIONS
37	Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Materials & Electro-Optic Modulation Using Metal-Free Perovskites. ACS Applied Modulation Using Metal-Free Perovskites. ACS Applied Modulation Using Metal-Free Pe	8.0	12
38	InP-Quantum-Dot-in-ZnS-Matrix Solids for Thermal and Air Stability. Chemistry of Materials, 2020, 32, 9584-9590.	6.7	8
39	Efficient and Stable Thinâ€Film Luminescent Solar Concentrators Enabled by Nearâ€Infrared Emission Perovskite Nanocrystals. Angewandte Chemie, 2020, 132, 7812-7816.	2.0	6
40	Selfâ€Aligned Nonâ€Centrosymmetric Conjugated Molecules Enable Electroâ€Optic Perovskites. Advanced Optical Materials, 0, , 2100730.	7.3	6
41	Manipulating Optical Properties of ZnO/Ga:ZnO Core–Shell Nanorods Via Spatially Tailoring Electronic Bandgap. Advanced Optical Materials, 2015, 3, 1066-1071.	7.3	5
42	Plasmon–exciton systems with high quantum yield using deterministic aluminium nanostructures with rotational symmetries. Nanoscale, 2019, 11, 20315-20323.	5.6	4
43	Nonlinear Optics: Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network (Advanced Optical Materials 1/2014). Advanced Optical Materials, 2014, 2, 39-39.	7.3	2
44	Unusual Fluorescent Properties of Stilbene Units and CdZnS/ZnS Quantum Dots Nanocomposites: Whiteâ€Light Emission in Solution versus Lightâ€Harvesting in Films. Macromolecular Chemistry and Physics, 2016, 217, 24-31.	2.2	2
45	Quantum Dots: Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi-Continuous Pumping (Adv. Mater. 1/2015). Advanced Materials, 2015, 27, 168-168.	21.0	1
46	Inverted Type-I CdS/CdSe Core/Crown colloidal quantum ring. , 2017, , .		1
47	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	2.0	1