
Lianping Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-cell RNA landscape of the osteoimmunology microenvironment in periodontitis. Theranostics, 2022, 12, 1074-1096.	10.0	45
2	Proteasome inhibition-enhanced fracture repair is associated with increased mesenchymal progenitor cells in mice. PLoS ONE, 2022, 17, e0263839.	2.5	6
3	Single-cell transcriptomics of popliteal lymphatic vessels and peripheral veins reveals altered lymphatic muscle and immune cell populations in the TNF-Tg arthritis model. Arthritis Research and Therapy, 2022, 24, 64.	3.5	9
4	Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. Journal of Clinical Investigation, 2022, 132, .	8.2	26
5	Bisphosphonates for delivering drugs to bone. British Journal of Pharmacology, 2021, 178, 2008-2025.	5.4	21
6	Lymphatic muscle cells contribute to dysfunction of the synovial lymphatic system in inflammatory arthritis in mice. Arthritis Research and Therapy, 2021, 23, 58.	3.5	12
7	RANKL-Based Osteoclastogenic Assay from Murine Bone Marrow Cells. Methods in Molecular Biology, 2021, 2230, 457-465.	0.9	1
8	Targeting Bortezomib to Bone Increases Its Bone Anabolic Activity and Reduces Systemic Adverse Effects in Mice. Journal of Bone and Mineral Research, 2020, 35, 343-356.	2.8	23
9	Lineage tracing reveals evidence of a popliteal lymphatic muscle progenitor cell that is distinct from skeletal and vascular muscle progenitors. Scientific Reports, 2020, 10, 18088.	3.3	12
10	Effect of <scp>VEGFC</scp> on lymph flow and inflammationâ€induced alveolar bone loss. Journal of Pathology, 2020, 251, 323-335.	4.5	13
11	RGS12 Is a Novel Critical NF-κB Activator in Inflammatory Arthritis. IScience, 2020, 23, 101172.	4.1	38
12	Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nature Communications, 2020, 11, 3159.	12.8	102
13	Targeting anti-cancer agents to bone using bisphosphonates. Bone, 2020, 138, 115492.	2.9	29
14	Ubiquitination of interleukin-1α is associated with increased pro-inflammatory polarization of murine macrophages deficient in the E3 ligase ITCH. Journal of Biological Chemistry, 2020, 295, 11764-11775.	3.4	4
15	<scp>TNF</scp> Receptorâ€Associated Factor 6 Mediates <scp>TNFα</scp> â€Induced Skeletal Muscle Atrophy in Mice During Aging. Journal of Bone and Mineral Research, 2020, 35, 1535-1548.	2.8	31
16	Bone-Targeted Bortezomib Inhibits Bortezomib-Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone. Journal of Bone and Mineral Research, 2020, 37, 629-642.	2.8	3
17	Attenuated Joint Tissue Damage Associated With Improved Synovial Lymphatic Function Following Treatment With Bortezomib in a Mouse Model of Experimental Posttraumatic Osteoarthritis. Arthritis and Rheumatology, 2019, 71, 244-257.	5.6	26
18	Avian Reticuloendotheliosis Viral Oncogene Related B Regulates Lymphatic Endothelial Cells during Vessel Maturation and Is Required for Lymphatic Vessel Function in Adult Mice. American Journal of Pathology, 2019, 189, 2516-2530.	3.8	3

#	Article	IF	CITATIONS
19	TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nature Communications, 2019, 10, 2795.	12.8	57
20	iNOS dependent and independent phases of lymph node expansion in mice with TNF-induced inflammatory-erosive arthritis. Arthritis Research and Therapy, 2019, 21, 240.	3.5	16
21	Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nature Reviews Rheumatology, 2018, 14, 94-106.	8.0	99
22	B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation. Nature Communications, 2018, 9, 5127.	12.8	105
23	Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption. Frontiers in Immunology, 2018, 9, 2263.	4.8	54
24	Synthesis of a Bone-Targeted Bortezomib with In Vivo Anti-Myeloma Effects in Mice. Pharmaceutics, 2018, 10, 154.	4.5	30
25	Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. International Journal of Nanomedicine, 2018, Volume 13, 2051-2064.	6.7	43
26	Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB Journal, 2018, 32, 3174-3183.	0.5	28
27	Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by Zoledronic acid. Scientific Reports, 2017, 7, 41358.	3.3	15
28	Brief Report: Treatment of Tumor Necrosis Factor–Transgenic Mice With Anti–Tumor Necrosis Factor Restores Lymphatic Contractions, Repairs Lymphatic Vessels, and May Increase Monocyte/Macrophage Egress. Arthritis and Rheumatology, 2017, 69, 1187-1193.	5.6	35
29	The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. Journal of Bone and Mineral Research, 2017, 32, 1320-1331.	2.8	44
30	Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. Journal of Bone and Mineral Research, 2017, 32, 1469-1480.	2.8	69
31	Association of Increased F4/80 ^{high} Macrophages With Suppression of Serumâ€Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells. Arthritis and Rheumatology, 2017, 69, 1762-1771.	5.6	23
32	Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice. Journal of Bone and Mineral Research, 2017, 32, 939-950.	2.8	30
33	Utilization of longitudinal ultrasound to quantify joint soft-tissue changes in a mouse model of posttraumatic osteoarthritis. Bone Research, 2017, 5, 17012.	11.4	11
34	Du-Huo-Ji-Sheng-Tang Attenuates Inflammation of TNF-Tg Mice Related to Promoting Lymphatic Drainage Function. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-12.	1.2	28
35	Production of RANKL by Memory B Cells: A Link Between B Cells and Bone Erosion in Rheumatoid Arthritis. Arthritis and Rheumatology, 2016, 68, 805-816.	5.6	138
36	Deletion of calponin 2 in macrophages attenuates the severity of inflammatory arthritis in mice. American Journal of Physiology - Cell Physiology, 2016, 311, C673-C685.	4.6	20

#	Article	IF	CITATIONS
37	Lymphatic imaging to assess rheumatoid flare: mechanistic insights and biomarker potential. Arthritis Research and Therapy, 2016, 18, 194.	3.5	26
38	Total saponins of panaxnotoginseng promotes lymphangiogenesis by activation VEGF-C expression of lymphatic endothelial cells. Journal of Ethnopharmacology, 2016, 193, 293-302.	4.1	22
39	Use of Hes1 -GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation. Bone, 2016, 90, 80-89.	2.9	9
40	Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Research and Therapy, 2016, 18, 62.	3.5	46
41	NF-κB-Mediated Regulation of Osteoclastogenesis. Endocrinology and Metabolism, 2015, 30, 35.	3.0	243
42	The role of the lymphatic system in inflammatory-erosive arthritis. Seminars in Cell and Developmental Biology, 2015, 38, 90-97.	5.0	54
43	High-Fat Diet Causes Bone Loss in Young Mice by Promoting Osteoclastogenesis Through Alteration of the Bone Marrow Environment. Calcified Tissue International, 2015, 96, 313-323.	3.1	99
44	Delayed Fracture Healing and Increased Callus Adiposity in a C57BL/6J Murine Model of Obesity-Associated Type 2 Diabetes Mellitus. PLoS ONE, 2014, 9, e99656.	2.5	88
45	Distribution and Alteration of Lymphatic Vessels in Knee Joints of Normal and Osteoarthritic Mice. Arthritis and Rheumatology, 2014, 66, 657-666.	5.6	42
46	Deletion of Mecom in mouse results in early-onset spinal deformity and osteopenia. Bone, 2014, 60, 148-161.	2.9	19
47	NF-κB RelB Negatively Regulates Osteoblast Differentiation and Bone Formation. Journal of Bone and Mineral Research, 2014, 29, 866-877.	2.8	55
48	Bortezomib prevents oncogenesis and bone metastasis of prostate cancer by inhibiting WWP1, Smurf1 and Smurf2. International Journal of Oncology, 2014, 45, 1469-1478.	3.3	32
49	RANKL-Based Osteoclastogenic Assays from Murine Bone Marrow Cells. Methods in Molecular Biology, 2014, 1130, 307-313.	0.9	15
50	Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. Journal of Clinical Investigation, 2014, 124, 297-310.	8.2	130
51	NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB. Journal of Clinical Investigation, 2014, 124, 3200-3214.	8.2	67
52	Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. Journal of Bone and Mineral Research, 2013, 28, 1925-1935.	2.8	56
53	Biology of Bone and Cartilage. , 2013, , 3-24.		4
54	Efficacy of B cell depletion therapy for murine joint arthritis flare is associated with increased lymphatic flow. Arthritis and Rheumatism, 2013, 65, 130-138.	6.7	53

#	Article	IF	CITATIONS
55	Ubiquitin E3 Ligase Itch Negatively Regulates Osteoclast Formation by Promoting Deubiquitination of Tumor Necrosis Factor (TNF) Receptor-associated Factor 6. Journal of Biological Chemistry, 2013, 288, 22359-22368.	3.4	28
56	Ubiquitin E3 Ligase Itch Negatively Regulates Osteoblast Differentiation from Mesenchymal Progenitor Cells. Stem Cells, 2013, 31, 1574-1583.	3.2	28
57	Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism. Bone Research, 2013, 1, 336-345.	11.4	23
58	Power Doppler Ultrasound Phenotyping of Expanding versus Collapsed Popliteal Lymph Nodes in Murine Inflammatory Arthritis. PLoS ONE, 2013, 8, e73766.	2.5	26
59	Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood, 2012, 119, 540-550.	1.4	185
60	Mechanisms of bone fragility in a mouse model of glucocorticoidâ€ŧreated rheumatoid arthritis: Implications for insufficiency fracture risk. Arthritis and Rheumatism, 2012, 64, 3649-3659.	6.7	39
61	The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone, 2012, 50, 813-823.	2.9	32
62	Osteoclast fusion and regulation by RANKL-dependent and independent factors. World Journal of Orthopedics, 2012, 3, 212.	1.8	96
63	CD23+/CD21hi B-cell translocation and ipsilateral lymph node collapse is associated with asymmetric arthritic flare in TNF-Tg mice. Arthritis Research and Therapy, 2011, 13, R138.	3.5	44
64	The Role of the Immune System and Bone Cells in Acute and Chronic Osteomyelitis. , 2011, , 369-389.		6
65	Measuring intranodal pressure and lymph viscosity to elucidate mechanisms of arthritic flare and therapeutic outcomes. Annals of the New York Academy of Sciences, 2011, 1240, 47-52.	3.8	11
66	Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 2011, 29, 1601-1610.	3.2	120
67	Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis and Rheumatism, 2011, 63, 2318-2328.	6.7	109
68	Functional Inhibition of Osteoblastic Cells in An In Vivo Mouse Model of Myeloid Leukemia. Blood, 2011, 118, 243-243.	1.4	3
69	MicroRNA-204 Regulates Runx2 Protein Expression and Mesenchymal Progenitor Cell Differentiation. Stem Cells, 2010, 28, 357-364.	3.2	525
70	The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer: Basic and Clinical Research, 2010, 4, 117822341000400.	1.1	199
71	Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. Journal of Bone and Mineral Research, 2010, 25, 1246-1256.	2.8	73
72	Smurf control in bone cells. Journal of Cellular Biochemistry, 2010, 110, 554-563.	2.6	35

#	Article	IF	CITATIONS
73	Nearâ€infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice. Arthritis and Rheumatism, 2010, 62, 1881-1889.	6.7	78
74	Effects of antiresorptive agents on osteomyelitis. Annals of the New York Academy of Sciences, 2010, 1192, 84-94.	3.8	31
75	Expanded CD23+/CD21hi B Cells in Inflamed Lymph Nodes Are Associated with the Onset of Inflammatory-Erosive Arthritis in TNF-Transgenic Mice and Are Targets of Anti-CD20 Therapy. Journal of Immunology, 2010, 184, 6142-6150.	0.8	73
76	Multiple expressions of lymphatic markers and morphological evolution of newly formed lymphatics in lymphangioma and lymph node lymphangiogenesis. Microvascular Research, 2010, 80, 195-201.	2.5	18
77	Osteoclasts Have Multiple Roles in Bone in Addition to Bone Resorption. Critical Reviews in Eukaryotic Gene Expression, 2009, 19, 171-180.	0.9	139
78	Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis and Rheumatism, 2009, 60, 2666-2676.	6.7	155
79	The Role of Bone Marrow Edema and Lymphangiogenesis in Inflammatory-Erosive Arthritis. Advances in Experimental Medicine and Biology, 2009, 658, 1-10.	1.6	7
80	NF-κB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. Journal of Clinical Investigation, 2009, 119, 3024-3034.	8.2	137
81	Disruption of Rankl/Rank Signaling Reduces TNF-Induced Joint Inflammation In Vivo. Open Arthritis Journal, 2009, 2, 7-13.	0.0	2
82	Regulation of osteoclast precursors in inflammatory bone loss. Current Opinion in Investigational Drugs, 2009, 10, 1195-203.	2.3	5
83	Elucidating bone marrow edema and myelopoiesis in murine arthritis using contrastâ€enhanced magnetic resonance imaging. Arthritis and Rheumatism, 2008, 58, 2019-2029.	6.7	45
84	SAR of Carbonâ€Linked, 2â€Substituted Purines: Synthesis and Characterization of AP23451 as a novel Boneâ€Targeted Inhibitor of Src Tyrosine Kinase With <i>In Vivo</i> Antiâ€Resorptive Activity. Chemical Biology and Drug Design, 2008, 71, 97-105.	3.2	15
85	TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood. Arthritis Research and Therapy, 2008, 10, R37.	3.5	70
86	Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry and Biophysics, 2008, 473, 139-146.	3.0	1,335
87	Lymphangiogenesis, myeloid cells and inflammation. Expert Review of Clinical Immunology, 2008, 4, 599-613.	3.0	12
88	Ubiquitin Ligase Smurf1 Mediates Tumor Necrosis Factor-induced Systemic Bone Loss by Promoting Proteasomal Degradation of Bone Morphogenetic Signaling Proteins. Journal of Biological Chemistry, 2008, 283, 23084-23092.	3.4	121
89	VEGF-C, a Lymphatic Growth Factor, Is a RANKL Target Gene in Osteoclasts That Enhances Osteoclastic Bone Resorption through an Autocrine Mechanism. Journal of Biological Chemistry, 2008, 283, 13491-13499.	3.4	70
90	Osteoclast Precursor Interaction with Bone Matrix Induces Osteoclast Formation Directly by an Interleukin-1-mediated Autocrine Mechanism. Journal of Biological Chemistry, 2008, 283, 9917-9924.	3.4	97

#	Article	IF	CITATIONS
91	Reciprocal Synergistic Interactions of Leukemic Cells with Osteoclast Progenitors in the Bone Microenvironment. Blood, 2008, 112, 322-322.	1.4	1
92	NF-κB p50 and p52 Regulate Receptor Activator of NF-κB Ligand (RANKL) and Tumor Necrosis Factor-induced Osteoclast Precursor Differentiation by Activating c-Fos and NFATc1. Journal of Biological Chemistry, 2007, 282, 18245-18253.	3.4	364
93	Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Research and Therapy, 2007, 9, R118.	3.5	134
94	Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research and Therapy, 2007, 9, S1.	3.5	674
95	Longitudinal assessment of synovial, lymph node, and bone volumes in inflammatory arthritis in mice by in vivo magnetic resonance imaging and microfocal computed tomography. Arthritis and Rheumatism, 2007, 56, 4024-4037.	6.7	79
96	MRI and Quantification of Draining Lymph Node Function in Inflammatory Arthritis. Annals of the New York Academy of Sciences, 2007, 1117, 106-123.	3.8	57
97	New Roles for Osteoclasts in Bone. Annals of the New York Academy of Sciences, 2007, 1116, 245-254.	3.8	33
98	The RANKL/RANK/OPG pathway. Current Osteoporosis Reports, 2007, 5, 98-104.	3.6	251
99	Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Current Opinion in Rheumatology, 2006, 18, 427-432.	4.3	109
100	Autoimmunity and Bone. Annals of the New York Academy of Sciences, 2006, 1068, 275-283.	3.8	30
101	Smad6 Interacts with Runx2 and Mediates Smad Ubiquitin Regulatory Factor 1-induced Runx2 Degradation. Journal of Biological Chemistry, 2006, 281, 3569-3576.	3.4	142
102	Tumor Necrosis Factor-α Increases Circulating Osteoclast Precursor Numbers by Promoting Their Proliferation and Differentiation in the Bone Marrow through Up-regulation of c-Fms Expression. Journal of Biological Chemistry, 2006, 281, 11846-11855.	3.4	177
103	Tumor Necrosis Factor Promotes Runx2 Degradation through Up-regulation of Smurf1 and Smurf2 in Osteoblasts. Journal of Biological Chemistry, 2006, 281, 4326-4333.	3.4	261
104	Receptor activator of nuclear ??B ligand and osteoprotegerin: where are we now and what about future treatment uses?. Current Opinion in Orthopaedics, 2005, 16, 370-375.	0.3	3
105	Osteoclast precursors, RANKL/RANK, and immunology. Immunological Reviews, 2005, 208, 19-29.	6.0	205
106	Roles for NF-κB and c-Fos in osteoclasts. Journal of Bone and Mineral Metabolism, 2005, 23, 11-15.	2.7	86
107	TNF.ALPHA. and pathologic bone resorption. Keio Journal of Medicine, 2005, 54, 127-131.	1.1	188
108	Circulating Osteoclast Precursors: A Mechanism and a Marker of Erosive Arthritis. Current Rheumatology Reviews, 2005, 1, 21-28.	0.8	11

#	Article	IF	CITATIONS
109	Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochemical and Biophysical Research Communications, 2005, 328, 709-720.	2.1	130
110	OSTEOCLASTS AND INFLAMMATORY OSTEOLYSIS. , 2005, , 125-144.		0
111	Malignant Autosomal Recessive Osteopetrosis Caused by Spontaneous Mutation of Murine Rank. Journal of Bone and Mineral Research, 2004, 19, 1689-1697.	2.8	35
112	Systemic tumor necrosis factor ? mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor ?-transgenic mice. Arthritis and Rheumatism, 2004, 50, 265-276.	6.7	198
113	RANK Signaling Is Not Required for TNFα-Mediated Increase in CD11bhi Osteoclast Precursors but Is Essential for Mature Osteoclast Formation in TNFα-Mediated Inflammatory Arthritis. Journal of Bone and Mineral Research, 2003, 19, 207-213.	2.8	200
114	Expression of Either NF-κB p50 or p52 in Osteoclast Precursors Is Required for IL-1-Induced Bone Resorption. Journal of Bone and Mineral Research, 2003, 18, 260-269.	2.8	51
115	In Vivo RANK Signaling Blockade Using the Receptor Activator of NF-ήB:Fc Effectively Prevents and Ameliorates Wear Debris-Induced Osteolysis via Osteoclast Depletion Without Inhibiting Osteogenesis. Journal of Bone and Mineral Research, 2002, 17, 192-199.	2.8	139
116	NF-κB p50 and p52 Expression Is Not Required for RANK-Expressing Osteoclast Progenitor Formation but Is Essential for RANK- and Cytokine-Mediated Osteoclastogenesis. Journal of Bone and Mineral Research, 2002, 17, 1200-1210.	2.8	148
117	Evidence for a Direct Role of Cyclo-Oxygenase 2 in Implant Wear Debris-Induced Osteolysis. Journal of Bone and Mineral Research, 2001, 16, 660-670.	2.8	99