Nicholas S C Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109782/publications.pdf

Version: 2024-02-01

102 papers 3,621 citations

32 h-index 52 g-index

106 all docs

106 docs citations

106 times ranked 2604 citing authors

#	Article	IF	Citations
1	Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 665-691.	4.0	215
2	Managing competing goals â€" a key role for the frontopolar cortex. Nature Reviews Neuroscience, 2017, 18, 645-657.	10.2	208
3	Hierarchical Development of the Primate Visual Cortex, as Revealed by Neurofilament Immunoreactivity: Early Maturation of the Middle Temporal Area (MT). Cerebral Cortex, 2006, 16, 405-414.	2.9	179
4	A simpler primate brain: the visual system of the marmoset monkey. Frontiers in Neural Circuits, 2014, 8, 96.	2.8	127
5	Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex. Journal of Neuroscience, 2009, 29, 4548-4563.	3.6	114
6	Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1367-1374.	2.6	112
7	Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template. Journal of Comparative Neurology, 2016, 524, 2161-2181.	1.6	109
8	Cortical afferents of visual area MT in the <i>Cebus</i> monkey: Possible homologies between New and old World monkeys. Visual Neuroscience, 1993, 10, 827-855.	1.0	107
9	Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. Journal of Comparative Neurology, 2006, 495, 149-172.	1.6	103
10	Representation of the visual field in the second visual area in the Cebus monkey. Journal of Comparative Neurology, 1988, 275, 326-345.	1.6	101
11	Visual areas in the dorsal and medial extrastriate cortices of the marmoset. Journal of Comparative Neurology, 1995, 359, 272-299.	1.6	99
12	Contrasting Patterns of Cortical Input to Architectural Subdivisions of the Area 8 Complex: A Retrograde Tracing Study in Marmoset Monkeys. Cerebral Cortex, 2013, 23, 1901-1922.	2.9	91
13	Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (<i>Callithrix jacchus</i>). Journal of Comparative Neurology, 2005, 483, 164-191.	1.6	70
14	Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity. European Journal of Neuroscience, 2010, 31, 1043-1062.	2.6	70
15	A Specialized Area in Limbic Cortex for Fast Analysis of Peripheral Vision. Current Biology, 2012, 22, 1351-1357.	3.9	65
16	Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus). European Journal of Neuroscience, 2007, 25, 1780-1792.	2.6	62
17	The dorsomedial visual areas in New World and Old World monkeys: homology and function. European Journal of Neuroscience, 2001, 13, 421-427.	2.6	61
18	Timescales of Sensory- and Decision-Related Activity in the Middle Temporal and Medial Superior Temporal Areas. Journal of Neuroscience, 2010, 30, 14036-14045.	3.6	54

#	Article	IF	Citations
19	Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, pointâ€image size, and proportionality to retinal ganglion cell density. Journal of Comparative Neurology, 2013, 521, 1001-1019.	1.6	54
20	Topographic and Laminar Maturation of Striate Cortex in Early Postnatal Marmoset Monkeys, as Revealed by Neurofilament Immunohistochemistry. Cerebral Cortex, 2005, 15, 740-748.	2.9	53
21	Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus). Cerebral Cortex, 2019, 29, 3836-3863.	2.9	52
22	Topography of claustrum and insula projections to medial prefrontal and anterior cingulate cortices of the common marmoset (<i>Callithrix jacchus</i>). Journal of Comparative Neurology, 2017, 525, 1421-1441.	1.6	51
23	Patterns of cortical input to the primary motor area in the marmoset monkey. Journal of Comparative Neurology, 2014, 522, 811-843.	1.6	49
24	The cortical motor system of the marmoset monkey (Callithrix jacchus). Neuroscience Research, 2015, 93, 72-81.	1.9	47
25	Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: Connectionally distinct subdivisions of the lateral premotor cortex. Journal of Comparative Neurology, 2015, 523, 1222-1247.	1.6	44
26	The (un)suitability of modern liquid crystal displays (LCDs) for vision research. Frontiers in Psychology, 2015, 6, 303.	2.1	43
27	Claustrum projections to prefrontal cortex in the capuchin monkey (Cebus apella). Frontiers in Systems Neuroscience, 2014, 8, 123.	2.5	42
28	Rapid Adaptation Induces Persistent Biases in Population Codes for Visual Motion. Journal of Neuroscience, 2016, 36, 4579-4590.	3.6	42
29	Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). Brain Research Protocols, 2003, 11, 168-177.	1.6	39
30	Resolving the organization of the third tier visual cortex in primates: A hypothesis-based approach. Visual Neuroscience, 2015, 32, E010.	1.0	39
31	Retinotopic orgarnzation of the primary visual cortex of flying foxes (<i>Pteropus poliocephalus and) Tj ETQq1 1</i>	0.784314 1.6	rgBT /Overlo
32	Third tier ventral extrastriate cortex in the New World monkey, Cebus apella. Experimental Brain Research, 2000, 132, 287-305.	1.5	38
33	Visually Evoked Responses in Extrastriate Area MT after Lesions of Striate Cortex in Early Life. Journal of Neuroscience, 2013, 33, 12479-12489.	3.6	37
34	CLARIFYING HOMOLOGIES IN THE MAMMALIAN CEREBRAL CORTEX: THE CASE OF THE THIRD VISUAL AREA (V3). Clinical and Experimental Pharmacology and Physiology, 2005, 32, 327-339.	1.9	36
35	Working Memory in the Service of Executive Control Functions. Frontiers in Systems Neuroscience, 2015, 9, 166.	2.5	36
36	A collaborative resource platform for non-human primate neuroimaging. Neurolmage, 2021, 226, 117519.	4.2	36

#	Article	IF	CITATIONS
37	Uniformity and Diversity of Cortical Projections to Precuneate Areas in the Macaque Monkey: What Defines Area PGm?. Cerebral Cortex, 2018, 28, 1700-1717.	2.9	35
38	Structure and function of the middle temporal visual area (MT) in the marmoset: Comparisons with the macaque monkey. Neuroscience Research, 2015, 93, 62-71.	1.9	34
39	Robust Visual Responses and Normal Retinotopy in Primate Lateral Geniculate Nucleus following Long-term Lesions of Striate Cortex. Journal of Neuroscience, 2018, 38, 3955-3970.	3.6	33
40	Organization of visual cortex in the northern quoll, Dasyurus hallucatus: evidence for a homologue of the second visual area in marsupials. European Journal of Neuroscience, 1999, 11, 907-915.	2.6	32
41	Uniformity and diversity of response properties of neurons in the primary visual cortex: Selectivity for orientation, direction of motion, and stimulus size from center to far periphery. Visual Neuroscience, 2014, 31, 85-98.	1.0	29
42	Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. ENeuro, 2017, 4, ENEURO.0344-17.2017.	1.9	29
43	Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: comparison of young adult and geriatric marmoset monkeys. Brain Structure and Function, 2017, 222, 3283-3293.	2.3	27
44	Thalamoâ€cortical projections to the macaque superior parietal lobule areas PEc and PE. Journal of Comparative Neurology, 2018, 526, 1041-1056.	1.6	26
45	Histologyâ€Based Average Template of the Marmoset Cortex With Probabilistic Localization of Cytoarchitectural Areas. Neurolmage, 2021, 226, 117625.	4.2	25
46	Breaking camouflage: responses of neurons in the middle temporal area to stimuli defined by coherent motion. European Journal of Neuroscience, 2012, 36, 2063-2076.	2.6	22
47	Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Frontiers in Neuroscience, 2015, 9, 132.	2.8	22
48	Direct current stimulation of prefrontal cortex modulates errorâ€induced behavioral adjustments. European Journal of Neuroscience, 2016, 44, 1856-1869.	2.6	22
49	Spatial Summation, End Inhibition and Side Inhibition in the Middle Temporal Visual Area (MT). Journal of Neurophysiology, 2007, 97, 1135-1148.	1.8	21
50	A simple method for creating wide-field visual stimulus for electrophysiology: Mapping and analyzing receptive fields using a hemispheric display. Journal of Vision, 2010, 10, 15-15.	0.3	21
51	Auditory cortex of the marmoset monkey – complex responses to tones and vocalizations under opiate anaesthesia in core and belt areas. European Journal of Neuroscience, 2013, 37, 924-941.	2.6	21
52	Thalamic projections to visual and visuomotor areas (V6 and V6A) in the Rostral Bank of the parieto-occipital sulcus of the Macaque. Brain Structure and Function, 2016, 221, 1573-1589.	2.3	21
53	Sensitivity of neurons in the middle temporal area of marmoset monkeys to random dot motion. Journal of Neurophysiology, 2017, 118, 1567-1580.	1.8	21
54	Auditory and Visual Motion Processing and Integration in the Primate Cerebral Cortex. Frontiers in Neural Circuits, 2018, 12, 93.	2.8	20

#	Article	IF	CITATIONS
55	High-Expanding Regions in Primate Cortical Brain Evolution Support Supramodal Cognitive Flexibility. Cerebral Cortex, 2019, 29, 3891-3901.	2.9	20
56	The case for a dorsomedial area in the primate  third-tier' visual cortex. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121372.	2.6	17
57	Neural plasticity following lesions of the primate occipital lobe: The marmoset as an animal model for studies of blindsight. Developmental Neurobiology, 2017, 77, 314-327.	3.0	17
58	Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimulation, 2021, 14, 741-750.	1.6	17
59	The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?. Cerebral Cortex, 2015, 25, 2556-2565.	2.9	16
60	Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation. Nature Communications, 2019, 10, 941.	12.8	16
61	Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cerebral Cortex, 2019, 29, 1473-1495.	2.9	16
62	Adaptation to direction statistics modulates perceptual discrimination. Journal of Vision, 2012, 12, 32-32.	0.3	15
63	Adaptation to Speed in Macaque Middle Temporal and Medial Superior Temporal Areas. Journal of Neuroscience, 2013, 33, 4359-4368.	3.6	15
64	Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7713-7718.	7.1	14
65	Age-related plasticity of the axon initial segment of cortical pyramidal cells in marmoset monkeys. Neurobiology of Aging, 2017, 57, 95-103.	3.1	14
66	Correlated Variability in the Neurons With the Strongest Tuning Improves Direction Coding. Cerebral Cortex, 2019, 29, 615-626.	2.9	14
67	A twisted visual field map in the primate dorsomedial cortex predicted by topographic continuity. Science Advances, 2020, 6, .	10.3	14
68	Masking reduces orientation selectivity in rat visual cortex. Journal of Neurophysiology, 2016, 116, 2331-2341.	1.8	13
69	Orientation selectivity in rat primary visual cortex emerges earlier with lowâ€contrast and highâ€luminance stimuli. European Journal of Neuroscience, 2016, 44, 2759-2773.	2.6	12
70	The impact of early environmental interventions on structural plasticity of the axon initial segment in neocortex. Developmental Psychobiology, 2017, 59, 39-47.	1.6	12
71	Claustral afferents of superior parietal areas PEc and PE in the macaque. Journal of Comparative Neurology, 2017, 525, 1475-1488.	1.6	11
72	Relation of koniocellular layers of dorsal lateral geniculate to inferior pulvinar nuclei in common marmosets. European Journal of Neuroscience, 2019, 50, 4004-4017.	2.6	11

#	Article	IF	Citations
73	In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Structure and Function, 2019, 224, 1957-1969.	2.3	11
74	Altered Sensitivity to Motion of Area MT Neurons Following Long-Term V1 Lesions. Cerebral Cortex, 2020, 30, 451-464.	2.9	11
75	Visual responses of neurones in the second visual area of flying foxes (Pteropus poliocephalus) after lesions of striate cortex. Journal of Physiology, 1998, 513, 507-519.	2.9	10
76	Thalamic afferents emphasize the different functions of macaque precuneate areas. Brain Structure and Function, 2020, 225, 853-870.	2.3	10
77	Visual responses in the dorsolateral frontal cortex of marmoset monkeys. Journal of Neurophysiology, 2021, 125, 296-304.	1.8	10
78	Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight. Brain Structure and Function, 2021, 226, 2763-2775.	2.3	10
79	Topographic Organization of the 'Third-Tier' Dorsomedial Visual Cortex in the Macaque. Journal of Neuroscience, 2019, 39, 5311-5325.	3.6	9
80	Understanding Sensory Information Processing Through Simultaneous Multi-area Population Recordings. Frontiers in Neural Circuits, 2018, 12, 115.	2.8	9
81	Weighting neurons by selectivity produces near-optimal population codes. Journal of Neurophysiology, 2019, 121, 1924-1937.	1.8	8
82	Sensitivity to Vocalization Pitch in the Caudal Auditory Cortex of the Marmoset: Comparison of Core and Belt Areas. Frontiers in Systems Neuroscience, 2019, 13, 5.	2.5	8
83	Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal–parietal network. Brain Structure and Function, 2021, 226, 3007-3022.	2.3	8
84	The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neuroscience and Biobehavioral Reviews, 2022, 138, 104692.	6.1	8
85	Remodeling of lateral geniculate nucleus projections to extrastriate area MT following long-term lesions of striate cortex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
86	Neural coding of action in three dimensions: Task―and time―invariant reference frames for visuospatial and motor―related activity in parietal area V6A. Journal of Comparative Neurology, 2020, 528, 3108-3122.	1.6	6
87	Volume reduction without neuronal loss in the primate pulvinar complex following striate cortex lesions. Brain Structure and Function, 2021, 226, 2417-2430.	2.3	6
88	Intracortical current steering shifts the location of evoked neural activity. Journal of Neural Engineering, 2022, 19, 035003.	3.5	6
89	Human-like perceptual masking is difficult to observe in rats performing an orientation discrimination task. PLoS ONE, 2018, 13, e0207179.	2.5	5
90	Auditory motion does not modulate spiking activity in the middle temporal and medial superior temporal visual areas. European Journal of Neuroscience, 2018, 48, 2013-2029.	2.6	5

#	Article	IF	CITATIONS
91	Natural motion trajectory enhances the coding of speed in primate extrastriate cortex. Scientific Reports, 2016, 6, 19739.	3.3	4
92	Differences in perceptual masking between humans and rats. Brain and Behavior, 2019, 9, e01368.	2.2	4
93	Distributed representation of vocalization pitch in marmoset primary auditory cortex. European Journal of Neuroscience, 2019, 49, 179-198.	2.6	4
94	Testing Neuronal Accounts of Anisotropic Motion Perception with Computational Modelling. PLoS ONE, 2014, 9, e113061.	2.5	3
95	Afferent Connections of Cytoarchitectural Area 6M and Surrounding Cortex in the Marmoset: Putative Homologues of the Supplementary and Pre-supplementary Motor Areas. Cerebral Cortex, 2021, 32, 41-62.	2.9	3
96	Accurate Reading with Sequential Presentation of Single Letters. Frontiers in Neuroscience, 2012, 6, 158.	2.8	2
97	Visual response characteristics of neurons in the second visual area of marmosets. Neural Regeneration Research, 2021, 16, 1871.	3.0	2
98	Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 462
99	Understanding structure–function relationships in the mammalian visual system: part one. Brain Structure and Function, 2021, 226, 2741-2744.	2.3	1
100	Filling in the Visual Gaps: Shifting Cortical Activity using Current Steering., 2021, 2021, 5733-5736.		1
101	Noisy decision thresholds can account for suboptimal detection of low coherence motion. Scientific Reports, 2016, 6, 18700.	3.3	0
102	Understanding structure–function relationships in the mammalian visual system: part two. Brain Structure and Function, 2022, , .	2.3	0