Amritlal Mandal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2108243/publications.pdf

Version: 2024-02-01

471509 302126 2,259 49 17 39 citations h-index g-index papers 49 49 49 3209 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PKCζ–NADPH Oxidase–PKCα Dependent Kv1.5 Phosphorylation by Endothelin-1 Modulates Nav1.5–NCX1–Cav1.2 Axis in Stimulating Ca2+ Level in Caveolae of Pulmonary Artery Smooth Muscle Cells. Cell Biochemistry and Biophysics, 2021, 79, 57-71.	1.8	4
2	TRPV1 activation stimulates NKCC1 and increases hydrostatic pressure in the mouse lens. American Journal of Physiology - Cell Physiology, 2020, 318, C969-C980.	4.6	14
3	TRPV1-dependent ERK1/2 activation in porcine lens epithelium. Experimental Eye Research, 2018, 172, 128-136.	2.6	13
4	Activation of TRPV1 channels leads to stimulation of NKCC1 cotransport in the lens. American Journal of Physiology - Cell Physiology, 2018, 315, C793-C802.	4.6	21
5	Solid Support Synthesis of a Dnp-Labeled Peptide for Assay of Matrix Metalloproteinase-2. , 2017, , 607-619.		0
6	Src Family Kinase Links Insulin Signaling to Short Term Regulation of Na,Kâ€ATPase in Nonpigmented Ciliary Epithelium. Journal of Cellular Physiology, 2017, 232, 1489-1500.	4.1	3
7	A Role for Calcium-Activated Adenylate Cyclase and Protein Kinase A in the Lens Src Family Kinase and Na,K-ATPase Response to Hyposmotic Stress. , 2017, 58, 4447.		6
8	The Significance of TRPV4 Channels and Hemichannels in the Lens and Ciliary Epithelium. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 504-508.	1.4	18
9	Na+/K+-ATPase: A Perspective. , 2016, , 3-30.		3
10	Calcium Handling in Pulmonary Vasculature Under Oxidative Stress: Focus on SERCA., 2016,, 207-226.		1
11	Phospholemman: A Brief Overview., 2016,, 243-259.		1
12	Calcium entry via connexin hemichannels in lens epithelium. Experimental Eye Research, 2015, 132, 52-58.	2.6	18
13	Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium. Experimental Eye Research, 2015, 140, 85-93.	2.6	24
14	Nonpigmented Ciliary Epithelial Cells Respond to Acetazolamide by a Soluble Adenylyl Cyclase Mechanism., 2014, 55, 187.		9
15	Nitric Oxide Regulation of Na, Kâ€ATPase Activity in Ocular Ciliary Epithelium Involves Src Family Kinase. Journal of Cellular Physiology, 2014, 229, 343-352.	4.1	18
16	Role of PKCαâ^'p38MAPKâ^'Giα axis in peroxynitrite-mediated inhibition of β-adrenergic response in pulmonary artery smooth muscle cells. Cellular Signalling, 2013, 25, 512-526.	3.6	11
17	Role of PKC-ζ in NADPH oxidase–PKCα–Giα axis dependent inhibition of β-adrenergic response by U46619 i pulmonary artery smooth muscle cells. Archives of Biochemistry and Biophysics, 2013, 540, 133-144.	n 3.0	3
18	Role of PKCαâ€"p38MAPKâ€"Giα axis in NADPH oxidase derived <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:m 169-180.<="" 2012,="" 523,="" activation="" and="" archives="" artery="" biochemistry="" biophysics,="" cells.="" cpla2="" in="" muscle="" of="" pulmonary="" smooth="" stimulation="" td="" u46619="" under=""><td>rgvØ> < mn</td><td>nl119n>2</td></mml:m></mml:msubsup></mml:mrow></mml:math>	r gv Ø> < mn	nl 119 n>2

#	Article	IF	CITATIONS
19	TRPV4 in porcine lens epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase activity. American Journal of Physiology - Cell Physiology, 2012, 302, C1751-C1761.	4.6	77
20	Hyposmotic stress causes ATP release and stimulates Na,Kâ€ATPase activity in porcine lens. Journal of Cellular Physiology, 2012, 227, 1428-1437.	4.1	42
21	The effect of endothelinâ€1 on Srcâ€family tyrosine kinases and Na,Kâ€ATPase activity in porcine lens epithelium. Journal of Cellular Physiology, 2011, 226, 2555-2561.	4.1	15
22	The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells. PLoS ONE, 2011, 6, e23835.	2.5	20
23	Hydrostatic Pressure–Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes. , 2010, 51, 3129.		33
24	Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. American Journal of Physiology - Renal Physiology, 2010, 299, F77-F90.	2.7	60
25	Evidence for Aldosteroneâ€mediated regulation of Naâ€K ATPase in kidney proximal tubules. FASEB Journal, 2010, 24, 606.25.	0.5	0
26	Responses of Sodium–Hydrogen Exchange to Nitric Oxide in Porcine Cultured Nonpigmented Ciliary Epithelium., 2009, 50, 5851.		11
27	Elevated hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve head astrocytes. American Journal of Physiology - Cell Physiology, 2009, 297, C111-C120.	4.6	10
28	Ca2+ influx mechanisms in caveolae vesicles of pulmonary smooth muscle plasma membrane under inhibition of $\hat{l}\pm2\hat{l}^21$ isozyme of Na+/K+-ATPase by ouabain. Life Sciences, 2009, 84, 139-148.	4.3	15
29	Ouabain-induced stimulation of sodium-hydrogen exchange in rat optic nerve astrocytes. American Journal of Physiology - Cell Physiology, 2008, 295, C100-C110.	4.6	22
30	Solubilization, purification and reconstitution of Ca2+-ATPase from bovine pulmonary artery smooth muscle microsomes by different detergents: Preservation of native structure and function of the enzyme by DHPC. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 20-31.	2.4	13
31	Role of MMP-2 in inhibiting Na+ dependent Ca2+ uptake by H2O2 in microsomes isolated from pulmonary smooth muscle. Molecular and Cellular Biochemistry, 2005, 270, 79-87.	3.1	3
32	Role of MMP-2 in PKCÎ'-mediated inhibition of Na+ dependent Ca2+ uptake in microsomes of pulmonary smooth muscle: Involvement of a pertussis toxin sensitive protein. Molecular and Cellular Biochemistry, 2005, 280, 107-117.	3.1	12
33	Role of MMP-2 in oxidant-mediated regulation of Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle. Indian Journal of Biochemistry and Biophysics, 2005, 42, 19-27.	0.0	1
34	Matrix Metalloproteinase-2-Mediated Inhibition of Na  +  -Dependent Ca 2 +  Uptake by Superoxide (O 2 . â^' ) in Microsomes of Pulmonary Smooth Muscle. IUBMB Life, 2004, 56, 267-276.	Raģiçals	7
35	Identification, purification and characterization of matrix metalloproteinase-2 in bovine pulmonary artery smooth muscle plasma membrane. Molecular and Cellular Biochemistry, 2004, 258, 73-89.	3.1	10
36	Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2. Biochimica Et Biophysica Acta - General Subjects, 2004, 1671, 70-78.	2.4	24

#	Article	IF	CITATIONS
37	Isolation of MMP-2 from MMP-2/TIMP-2 complex: characterization of the complex and the free enzyme in pulmonary vascular smooth muscle plasma membrane. Biochimica Et Biophysica Acta - General Subjects, 2004, 1674, 158-74.	2.4	7
38	Clinical implications of matrix metalloproteinases. Molecular and Cellular Biochemistry, 2003, 252, 305-329.	3.1	135
39	Regulation of matrix metalloproteinases: an overview. Molecular and Cellular Biochemistry, 2003, 253, 269-285.	3.1	982
40	Oxidant, antioxidant and physical exercise. Molecular and Cellular Biochemistry, 2003, 253, 307-312.	3.1	189
41	Structure and evolutionary aspects of matrix metalloproteinases: a brief overview. Molecular and Cellular Biochemistry, 2003, 253, 31-40.	3.1	61
42	Identification, purification and partial characterization of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in bovine pulmonary artery smooth muscle. Molecular and Cellular Biochemistry, 2003, 254, 145-155.	3.1	4
43	Identification, purification and partial characterization of tissue inhibitor of matrix metalloproteinase-2 in bovine pulmonary artery smooth muscle. Molecular and Cellular Biochemistry, 2003, 254, 275-287.	3.1	13
44	Role of matrix metalloprotease-2 in oxidant activation of Ca2+ATPase by hydrogen peroxide in pulmonary vascular smooth muscle plasma membrane. Journal of Biosciences, 2003, 28, 205-213.	1.1	10
45	Role of membrane-associated Ca+ dependent matrix metalloprotease-2 in the oxidant activation of Ca2+Atpase by tertiary butylhydroperoxide. Molecular and Cellular Biochemistry, 2002, 237, 85-93.	3.1	12
46	Protective role of magnesium in cardiovascular diseases: a review. Molecular and Cellular Biochemistry, 2002, 238, 163-179.	3.1	201
47	Role of Ca2+-Dependent Metalloprotease-2 in Stimulating Ca2+ATPase Activity Under Peroxynitrite Treatment in Bovine Pulmonary Artery Smooth Muscle Membrane. IUBMB Life, 2002, 53, 167-173.	3.4	20
48	Chapter 16 Ca2+ dynamics under oxidant stress in the cardiovascular system. Cell and Molecular Response To Stress, 2001, , 213-228.	0.4	0
49	Complement activation in heart diseases. Cellular Signalling, 2000, 12, 607-617.	3.6	64