
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2108131/publications.pdf Version: 2024-02-01

1	A Glimpse of Various Pathogenetic Mechanisms of Diabetic Nephropathy. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 395-423.	22.4	575
2	The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology, 2017, 11, 297-311.	9.0	383
3	AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney International, 2017, 92, 1071-1083.	5.2	275
4	Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biology, 2018, 16, 32-46.	9.0	269
5	Disruption of Renal Tubular Mitochondrial Quality Control by Myo-Inositol Oxygenase in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2015, 26, 1304-1321.	6.1	228
6	PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy, 2018, 14, 880-897.	9.1	209
7	TLR4/NF-κB Signaling Induces GSDMD-Related Pyroptosis in Tubular Cells in Diabetic Kidney Disease. Frontiers in Endocrinology, 2019, 10, 603.	3.5	109
8	Lowâ€dose paclitaxel ameliorates fibrosis in the remnant kidney model by downâ€regulating miRâ€192. Journal of Pathology, 2011, 225, 364-377.	4.5	105
9	p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. American Journal of Physiology - Renal Physiology, 2010, 299, F1014-F1025.	2.7	95
10	Renoprotective approaches and strategies in acute kidney injury. , 2016, 163, 58-73.		88
11	Normoalbuminuric diabetic kidney disease. Frontiers of Medicine, 2017, 11, 310-318.	3.4	85
12	A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. Advances in Experimental Medicine and Biology, 2019, 1165, 49-79.	1.6	82
13	Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney International, 2015, 88, 662-665.	5.2	78
14	Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cellular Immunology, 2017, 316, 53-60.	3.0	76
15	Mitochondria-Associated ER Membranes – The Origin Site of Autophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 595.	3.7	75
16	HIFâ€1α ameliorates tubular injury in diabetic nephropathy via HOâ€1–mediated control of mitochondrial dynamics. Cell Proliferation, 2020, 53, e12909.	5.3	74
17	A Glimpse of the Pathogenetic Mechanisms of Wnt/ <i>β</i> -Catenin Signaling in Diabetic Nephropathy. BioMed Research International, 2013, 2013, 1-7.	1.9	70
18	Rap1b GTPase Ameliorates Glucose-Induced Mitochondrial Dysfunction. Journal of the American Society of Nephrology: JASN, 2008, 19, 2293-2301.	6.1	67

#	Article	IF	CITATIONS
19	Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy. Current Medicinal Chemistry, 2017, 24, 3185-3202.	2.4	58
20	Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney International, 2019, 95, 880-895.	5.2	54
21	Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clinical Science, 2018, 132, 2407-2422.	4.3	53
22	DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.	6.1	53
23	The deacetylase sirtuin 6 protects against kidneyÂfibrosis by epigenetically blocking β-catenin targetÂgene expression. Kidney International, 2020, 97, 106-118.	5.2	53
24	MicroRNA-129-5p modulates epithelial-to-mesenchymal transition by targeting SIP1 and SOX4 during peritoneal dialysis. Laboratory Investigation, 2015, 95, 817-832.	3.7	51
25	The Susceptibility Genes in Diabetic Nephropathy. Kidney Diseases (Basel, Switzerland), 2018, 4, 226-237.	2.5	51
26	The Role of TLR4 on PGC-1 <i>α</i> -Mediated Oxidative Stress in Tubular Cell in Diabetic Kidney Disease. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	45
27	Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biology, 2017, 13, 482-497.	9.0	43
28	Multipleâ€microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. Journal of Cellular Physiology, 2019, 234, 16447-16462.	4.1	43
29	Involvement of the NLRC4-Inflammasome in Diabetic Nephropathy. PLoS ONE, 2016, 11, e0164135.	2.5	42
30	Aberrant DNA methylation of mTOR pathway genes promotes inflammatory activation of immune cells in diabetic kidney disease. Kidney International, 2019, 96, 409-420.	5.2	42
31	PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacological Research, 2020, 160, 105080.	7.1	42
32	Lipophagy deficiency exacerbates ectopic lipid accumulation and tubular cells injury in diabetic nephropathy. Cell Death and Disease, 2021, 12, 1031.	6.3	37
33	p66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Scientific Reports, 2016, 6, 29302.	3.3	36
34	Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy. Clinical Science, 2018, 132, 1297-1314.	4.3	36
35	ER-Phagy: A New Regulator of ER Homeostasis. Frontiers in Cell and Developmental Biology, 2021, 9, 684526.	3.7	36
36	STC-1 ameliorates renal injury in diabetic nephropathy by inhibiting the expression of BNIP3 through the AMPK/SIRT3 pathway. Laboratory Investigation, 2019, 99, 684-697.	3.7	35

#	Article	IF	CITATIONS
37	Association Between Vitamin D Status and Diabetic Complications in Patients With Type 2 Diabetes Mellitus: A Cross-Sectional Study in Hunan China. Frontiers in Endocrinology, 2020, 11, 564738.	3.5	33
38	Significance of serum procalcitonin as biomarker for detection of bacterial peritonitis: a systematic review and meta-analysis. BMC Infectious Diseases, 2014, 14, 452.	2.9	31
39	Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) and Their Prospective Roles in Kidney Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-21.	4.0	29
40	PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum–Mitochondria Contact and Mitophagy in Diabetic Nephropathy. Diabetes, 2022, 71, 1034-1050.	0.6	29
41	Epac1-Mediated, High Glucose–Induced Renal Proximal Tubular Cells Hypertrophy via the Akt/p21 Pathway. American Journal of Pathology, 2011, 179, 1706-1718.	3.8	28
42	AKT regulation of mesothelial-to-mesenchymal transition in peritoneal dialysis is modulated by smurf2 and deubiquitinating enzyme USP4. BMC Cell Biology, 2015, 16, 7.	3.0	28
43	myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience. Journal of Biological Chemistry, 2016, 291, 5688-5707.	3.4	27
44	Identification of two novel subgroups in patients with diabetes mellitus and their association with clinical outcomes: A twoâ€step cluster analysis. Journal of Diabetes Investigation, 2021, 12, 1346-1358.	2.4	27
45	DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clinical Science, 2020, 134, 677-694.	4.3	25
46	Isolation and Functional Analysis of Mouse UbA52 Gene and Its Relevance to Diabetic Nephropathy. Journal of Biological Chemistry, 2002, 277, 29953-29962.	3.4	23
47	PKC <i>δ</i> Promotes High Glucose Induced Renal Tubular Oxidative Damage via Regulating Activation and Translocation of p66Shc. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-11.	4.0	21
48	Red cell distribution width as a significant indicator of medication and prognosis in type 2 diabetic patients. Scientific Reports, 2017, 7, 2709.	3.3	21
49	Aberrant Wnt/Beta-Catenin Pathway Activation in Dialysate-Induced Peritoneal Fibrosis. Frontiers in Pharmacology, 2017, 8, 774.	3.5	21
50	Protein arginine methyltranferase-1 induces ER stress and epithelial-mesenchymal transition in renal tubular epithelial cells and contributes to diabetic nephropathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2563-2575.	3.8	21
51	Mitochondria-Associated Membranes (MAMs): A Novel Therapeutic Target for Treating Metabolic Syndrome. Current Medicinal Chemistry, 2021, 28, 1347-1362.	2.4	21
52	MicroRNAâ€302c modulates peritoneal dialysisâ€associated fibrosis by targeting connective tissue growth factor. Journal of Cellular and Molecular Medicine, 2019, 23, 2372-2383.	3.6	20
53	The Loss of Mitochondrial Quality Control in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 706832.	3.7	20
54	Effects of Omegaâ€3 Fatty Acids on Markers of Inflammation in Patients With Chronic Kidney Disease: A Controversial Issue. Therapeutic Apheresis and Dialysis, 2018, 22, 124-132.	0.9	19

#	Article	IF	CITATIONS
55	Aristolochic acid induces renal fibrosis by arresting proximal tubular cells in G2/M phase mediated by HIFâ€1α. FASEB Journal, 2020, 34, 12599-12614.	0.5	19
56	Effects of HIF-1α on renal fibrosis in cisplatin-induced chronic kidney disease. Clinical Science, 2021, 135, 1273-1288.	4.3	19
57	Identification of key biomarkers in diabetic nephropathy via bioinformatic analysis . Journal of Cellular Biochemistry, 2019, 120, 8676-8688.	2.6	18
58	IFN-γ, CXCL16, uPAR: potential biomarkers for systemic lupus erythematosus. Clinical and Experimental Rheumatology, 2018, 36, 36-43.	0.8	18
59	Modulation of angiotensin II-induced inflammatory cytokines by the Epac1-Rap1A-NHE3 pathway: implications in renal tubular pathobiology. American Journal of Physiology - Renal Physiology, 2014, 306, F1260-F1274.	2.7	17
60	Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Frontiers in Pharmacology, 2021, 12, 768100.	3.5	16
61	DsbA-L Ameliorates Renal Injury Through the AMPK/NLRP3 Inflammasome Signaling Pathway in Diabetic Nephropathy. Frontiers in Physiology, 2021, 12, 659751.	2.8	15
62	Validation of the interstitial fibrosis and tubular atrophy on the new pathological classification in patients with diabetic nephropathy: A single-center study in China. Journal of Diabetes and Its Complications, 2016, 30, 537-541.	2.3	14
63	Aeromonas sobria peritonitis in a peritoneal dialysis (PD) patient: a case report and review of the literature. BMC Nephrology, 2019, 20, 180.	1.8	14
64	RNA‣eq analysis of potential IncRNAs and genes for the antiâ€renal fibrotic effect of norcantharidin. Journal of Cellular Biochemistry, 2019, 120, 17354-17367.	2.6	14
65	MAMs Protect Against Ectopic Fat Deposition and Lipid-Related Kidney Damage in DN Patients. Frontiers in Endocrinology, 2021, 12, 609580.	3.5	14
66	Epac activation ameliorates tubulointerstitial inflammation in diabetic nephropathy. Acta Pharmacologica Sinica, 2022, 43, 659-671.	6.1	14
67	Targeting the NLRP3 Inflammasome in Diabetic Nephropathy. Current Medicinal Chemistry, 2021, 28, 8810-8824.	2.4	14
68	Small interfering RNA targeting ILK inhibits EMT in human peritoneal mesothelial cells through phosphorylation of GSK-31². Molecular Medicine Reports, 2014, 10, 137-144.	2.4	13
69	Tacrolimus ameliorates tubulointerstitial inflammation in diabetic nephropathy via inhibiting the NFATc1/TRPC6 pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 9810-9824.	3.6	13
70	Mitophagy: A Novel Therapeutic Target for Treating DN. Current Medicinal Chemistry, 2021, 28, 2717-2728.	2.4	12
71	Urinary sediment CCL5 messenger RNA as a potential prognostic biomarker of diabetic nephropathy. CKJ: Clinical Kidney Journal, 2022, 15, 534-544.	2.9	12
72	Diagnostic Accuracy of Serum Cystatin C for the Evaluation of Renal Dysfunction in Diabetic Patients: A Metaâ€Analysis. Therapeutic Apheresis and Dialysis, 2016, 20, 579-587.	0.9	11

#	Article	IF	CITATIONS
73	Family history of diabetes is associated with diabetic foot complications in type 2 diabetes. Scientific Reports, 2020, 10, 17056.	3.3	11
74	Design and validation of a scoring model for differential diagnosis of diabetic nephropathy and nondiabetic renal diseases in type 2 diabetic patients. Journal of Diabetes, 2020, 12, 237-246.	1.8	10
75	The CXCL1-CXCR2 Axis Mediates Tubular Injury in Diabetic Nephropathy Through the Regulation of the Inflammatory Response. Frontiers in Physiology, 2021, 12, 782677.	2.8	10
76	J-shaped association of platelet-to-lymphocyte ratio with 5-year mortality among patients with chronic kidney disease in a prospective cohort study. International Urology and Nephrology, 2020, 52, 1943-1957.	1.4	9
77	Digital Spatial Profiling of Individual Glomeruli From Patients With Anti-Neutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis. Frontiers in Immunology, 2022, 13, 831253.	4.8	9
78	PRDM16 Regulating Adipocyte Transformation and Thermogenesis: A Promising Therapeutic Target for Obesity and Diabetes. Frontiers in Pharmacology, 2022, 13, 870250.	3.5	9
79	Association between albumin-to-globulin ratio and long-term mortality in patients with chronic kidney disease: a cohort study. International Urology and Nephrology, 2020, 52, 1103-1115.	1.4	8
80	Molecular mechanisms of melatonin in the reversal of LPS-induced EMT in peritoneal mesothelial cells. Molecular Medicine Reports, 2016, 14, 4342-4348.	2.4	7
81	The Kidney Specific Protein myo-Inositol Oxygenase, a Potential Biomarker for Diabetic Nephropathy. Kidney and Blood Pressure Research, 2018, 43, 1772-1785.	2.0	7
82	Predictive value of sub classification of focal segmental glomerular sclerosis in Oxford classification of IgA nephropathy. Annals of Medicine, 2021, 53, 587-595.	3.8	7
83	The 100 top-cited articles in diabetic kidney disease: a bibliometric analysis. Renal Failure, 2021, 43, 781-795.	2.1	7
84	Norcantharidin inhibits renal interstitial fibrosis by downregulating PP2Ac expression. American Journal of Translational Research (discontinued), 2015, 7, 2199-211.	0.0	7
85	AdipoRon Protects against Tubular Injury in Diabetic Nephropathy by Inhibiting Endoplasmic Reticulum Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	6
86	The Relationship Between Simple Renal Cysts and Renal Function in Patients With Type 2 Diabetes. Frontiers in Physiology, 2020, 11, 616167.	2.8	6
87	Exploration of pathological prediction of chronic kidney diseases by a novel theory of bi-directional probability. Scientific Reports, 2016, 6, 32151.	3.3	5
88	Sex Differences in Kidney Stone Disease in Chinese Patients with Type 2 Diabetes Mellitus. Kidney Diseases (Basel, Switzerland), 2020, 6, 195-203.	2.5	5
89	Nocardiosis in glomerular disease patients with immunosuppressive therapy. BMC Nephrology, 2020, 21, 516.	1.8	4
90	Effects of family history of diabetes on pancreatic β-cell function and diabetic ketoacidosis in newly diagnosed patients with type 2 diabetes: a cross-sectional study in China. BMJ Open, 2021, 11, e041072.	1.9	4

#	Article	IF	CITATIONS
91	Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Current Medicinal Chemistry, 2021, 28, 1003-1024.	2.4	4
92	The comparison of albumin and 6% hydroxyethyl starches (130/0.4) in cardiac surgery: a meta-analysis of randomized controlled clinical trials. BMC Surgery, 2021, 21, 342.	1.3	4
93	Metabolomics window into the role of acute kidney injury after coronary artery bypass grafting in diabetic nephropathy progression. PeerJ, 2020, 8, e9111.	2.0	4
94	Clinical significance of Mtype phospholipase A2 receptor and thrombospondin Type 1 domaincontaining 7A in primary membranous nephropathy. Journal of Central South University (Medical Sciences), 2020, 45, 693-700.	0.1	4
95	Multiple myeloma-associated skin light chain amyloidosis: A case of misdiagnosis. Oncology Letters, 2016, 11, 3617-3620.	1.8	3
96	Association of Bowman's capsule rupture with prognosis in patients with lupus nephritis. Journal of Nephrology, 2022, 35, 1193-1204.	2.0	3
97	Spontaneous calf hematoma in a patient with diabetic nephropathy receiving maintenance hemodialysis: A case report and review of the literature. Hemodialysis International, 2015, 19, E49-53.	0.9	2
98	Semaglutide in weight management. Lancet, The, 2019, 394, 1226.	13.7	2
99	Successful treatment of anti-EPO antibody associated refractory anemia with hypoxia-inducible factor prolyl hydroxylase inhibitor. Renal Failure, 2020, 42, 860-864.	2.1	2
100	Mitochondrial DNA-dependent inflammation in kidney diseases. International Immunopharmacology, 2022, 107, 108637.	3.8	2
101	HPLC determination and clinical significance of serum prednisone in patients with nephrotic syndrome. International Journal of Clinical and Experimental Medicine, 2014, 7, 5517-22.	1.3	1
102	Microbiology and Outcome of Peritoneal Dialysis-Related Peritonitis in Elderly Patients: A Retrospective Study in China. Frontiers in Medicine, 2022, 9, 799110.	2.6	1
103	Atrial fibrillation and type 1 diabetes. Lancet Diabetes and Endocrinology,the, 2017, 5, 936-937.	11.4	0
104	Chlormethine Hydrochloride is Not Inferior to Tacrolimus in Treating Steroid-Resistant Nephrotic Syndrome. Kidney and Blood Pressure Research, 2018, 43, 68-79.	2.0	0
105	Statistical Prediction in Pathological Types of Chronic Kidney Disease. Chinese Medical Journal, 2018, 131, 2741-2742.	2.3	0
106	The multifaceted contributions of long noncoding RNAs on mitochondrial dysfunction in diabetic nephropathy. Diabetic Nephropathy, 2021, 1, 5-8.	0.1	0
107	Two cases of Type ⢠collagen glomerulopathy and literature review. Journal of Central South University (Medical Sciences), 2020, 45, 869-873.	0.1	0
108	Insulin therapy in diabetic kidney disease. Diabetic Nephropathy, 2021, 1, 67-76.	0.1	0