Carole Rovere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1?. Antioxidants and Redox Signaling, 2022, 37, 349-369.	5.4	3
2	Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic proteinâ€positive cells and microglia in male mice. Glia, 2021, 69, 42-60.	4.9	30
3	Postprandial Hyperglycemia Stimulates Neuroglial Plasticity in Hypothalamic POMC Neurons after a Balanced Meal. Cell Reports, 2020, 30, 3067-3078.e5.	6.4	33
4	Long-Term Energy Deficit in Mice Causes Long-Lasting Hypothalamic Alterations after Recovery. Neuroendocrinology, 2017, 105, 372-383.	2.5	13
5	Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines. Frontiers in Endocrinology, 2017, 8, 197.	3.5	74
6	An ex vivo Perifusion Method for Quantitative Determination of Neuropeptide Release from Mouse Hypothalamic Explants. Bio-protocol, 2017, 7, e2521.	0.4	0
7	New Insights in Anorexia Nervosa. Frontiers in Neuroscience, 2016, 10, 256.	2.8	144
8	Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Reports, 2016, 17, 1738-1752.	4.5	40
9	The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Annals of the New York Academy of Sciences, 2015, 1351, 127-140.	3.8	83
10	ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death and Disease, 2015, 6, e1879-e1879.	6.3	293
11	Effects of sleeve gastrectomy in high fat diet-induced obese mice: respective role of reduced caloric intake, white adipose tissue inflammation and changes in adipose tissue and ectopic fat depots. Surgical Endoscopy and Other Interventional Techniques, 2014, 28, 592-602.	2.4	23
12	Melanin-concentrating hormone regulates beat frequency of ependymal cilia and ventricular volume. Nature Neuroscience, 2013, 16, 845-847.	14.8	70
13	Chemokines and chemokine receptors: New actors in neuroendocrine regulations. Frontiers in Neuroendocrinology, 2011, 32, 10-24.	5.2	79
14	Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. American Journal of Clinical Nutrition, 2011, 94, 450-458.	4.7	106
15	The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. Journal of Neuroimmunology, 2010, 224, 93-100.	2.3	326
16	Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacological Research, 2010, 61, 226-233.	7.1	82
17	Glucose Inhibition Persists in Hypothalamic Neurons Lacking Tandem-Pore K+ Channels. Journal of Neuroscience, 2009, 29, 2528-2533.	3.6	69
18	Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience, 2009, 162, 1072-1080.	2.3	91

CAROLE ROVERE

#	Article	IF	CITATIONS
19	Melanin-concentrating hormone producing neurons: Activities and modulations. Peptides, 2009, 30, 2031-2039.	2.4	57
20	Melanin-concentrating hormone induces neurite outgrowth in human neuroblastoma SH-SY5Y cells through p53 and MAPKinase signaling pathways. Peptides, 2009, 30, 2014-2024.	2.4	17
21	Stromalâ€cellâ€derived factor 1α /CXCL12 modulates highâ€threshold calcium currents in rat substantia nigra. European Journal of Neuroscience, 2008, 28, 862-870.	2.6	32
22	How cytokines can influence the brain: A role for chemokines?. Journal of Neuroimmunology, 2008, 198, 46-55.	2.3	49
23	The chemokine stromal cell-derived factor-1/CXCL12 activates the nigrostriatal dopamine system. Journal of Neurochemistry, 2007, 102, 1175-1183.	3.9	76
24	Stromal cell-derived factor-1? modulation of the excitability of rat substantia nigra dopaminergic neurones: presynaptic mechanisms. Journal of Neurochemistry, 2006, 96, 1540-1550.	3.9	58
25	Stromal cell-derived factor-1alpha directly modulates voltage-dependent currents of the action potential in mammalian neuronal cells. Journal of Neurochemistry, 2005, 93, 963-973.	3.9	44
26	Complex effects of stromal cell-derived factor-1α on melanin-concentrating hormone neuron excitability. European Journal of Neuroscience, 2005, 21, 701-710.	2.6	59
27	The Arg617-Arg618 cleavage site in the C-terminal domain of PC1 plays a major role in the processing and targeting of the enzyme within the regulated secretory pathway. Journal of Neurochemistry, 2003, 85, 1592-1603.	3.9	17
28	Appetite-Boosting Property of Pro-Melanin-Concentrating Hormone131–165 (Neuropeptide-Glutamic) Tj ETQ Therapeutics, 2002, 302, 766-773.	q0 0 0 rgE 2.5	3T /Overlock 1 22
29	Production of Recombinant Large Proneurotensin/Neuromedin N-Derived Peptides and Characterization of Their Binding and Biological Activity. Biochemical and Biophysical Research Communications, 2002, 290, 1161-1168.	2.1	39
30	SVK14 cells express an MCH binding site different from the MCH1 or MCH2 receptor. Biochemical and Biophysical Research Communications, 2002, 295, 841-848.	2.1	11
31	Regional and cellular localization of the neuroendocrine prohormone convertases PC1 and PC2 in the rat central nervous system. Journal of Comparative Neurology, 2000, 424, 439-460.	1.6	49
32	Cathepsin-B Fusion Proteins Misroute Secretory Protein Partners Such as the Proprotein Convertase PC2-7B2 Complex toward the Lysosomal Degradation Pathways. Biochemical and Biophysical Research Communications, 2000, 276, 594-599.	2.1	4
33	The RGD Motif and the C-terminal Segment of Proprotein Convertase 1 Are Critical for Its Cellular Trafficking but Not for Its Intracellular Binding to Integrin α5β1. Journal of Biological Chemistry, 1999, 274, 12461-12467.	3.4	39
34	Pro-neurotensin/Neuromedin N Expression and Processing in Human Colon Cancer Cell Lines. Biochemical and Biophysical Research Communications, 1998, 246, 155-159.	2.1	26
35	PC5-A-mediated Processing of Pro-neurotensin in Early Compartments of the Regulated Secretory Pathway of PC5-transfected PC12 Cells. Journal of Biological Chemistry, 1998, 273, 25339-25346.	3.4	46
36	Evidence That PC2 Is the Endogenous Pro-neurotensin Convertase in rMTC 6-23 Cells and That PC1- and PC2-transfected PC12 Cells Differentially Process Pro-neurotensin. Journal of Biological Chemistry, 1996, 271, 11368-11375.	3.4	58

CAROLE ROVERE

#	Article	IF	CITATIONS
37	Impaired processing of brain proneurotensin and promelanin- concentrating hormone in obese fat/fat mice. Endocrinology, 1996, 137, 2954-2958.	2.8	60
38	Mutational Analysis of PC1 (SPC3) in PC12 Cells. Journal of Biological Chemistry, 1995, 270, 24702-24706.	3.4	36
39	Post-translational processing of the neurotensin/neuromedin N precursor in the central nervous system of the rat—I. Biochemical characterization of maturation products. Neuroscience, 1994, 60, 159-166.	2.3	20
40	PC12 cells can be induced to produce, but do not process, the neurotensin/neuromedin N precursor. Peptides, 1993, 14, 983-989.	2.4	15
41	Biosynthesis and posttranslational processing of the neurotensin/neuromedin N precursor in the rat medullary thyroid carcinoma 6-23 cell line. Effect of dexamethasone. Endocrinology, 1993, 132, 1614-1620.	2.8	9
42	Biosynthesis, Maturation, Release, and Degradation of Neurotensin and Neuromedin N. Annals of the New York Academy of Sciences, 1992, 668, 30-42.	3.8	69