List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large area van der Waals epitaxy of II–VI CdSe thin films for flexible optoelectronics and full-color imaging. Nano Research, 2022, 15, 368-376.	10.4	14
2	A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Advanced Functional Materials, 2022, 32, 2103057.	14.9	21
3	Semiconductor Nanowire Arrays for Highâ€Performance Miniaturized Chemical Sensing. Advanced Functional Materials, 2022, 32, 2107596.	14.9	16
4	A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications (Adv. Funct. Mater. 3/2022). Advanced Functional Materials, 2022, 32, .	14.9	1
5	Investigation of light–matter interaction in single vertical nanowires in ordered nanowire arrays. Nanoscale, 2022, 14, 3527-3536.	5.6	6
6	Design of InAs nanosheet arrays with ultrawide polarization-independent high absorption for infrared photodetection. Applied Physics Letters, 2022, 120, .	3.3	6
7	Self-frequency-conversion nanowire lasers. Light: Science and Applications, 2022, 11, 120.	16.6	13
8	Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. ACS Nano, 2021, 15, 9126-9133.	14.6	19
9	A Highâ€Efficiency Wavelengthâ€Tunable Monolayer LED with Hybrid Continuousâ€Pulsed Injection. Advanced Materials, 2021, 33, e2101375.	21.0	10
10	Light Absorption in Nanowire Photonic Crystal Slabs and the Physics of Exceptional Points: The Shape Shifter Modes. Sensors, 2021, 21, 5420.	3.8	0
11	Broadband GaAsSb Nanowire Array Photodetectors for Filter-Free Multispectral Imaging. Nano Letters, 2021, 21, 7388-7395.	9.1	36
12	Controlling the lasing modes in random lasers operating in the Anderson localization regime. Optics Express, 2021, 29, 33548.	3.4	7
13	Selfâ€Powered InP Nanowire Photodetector for Singleâ€Photon Level Detection at Room Temperature. Advanced Materials, 2021, 33, e2105729.	21.0	18
14	High-speed InGaAs/InP Quantum Well Nanowire Array Light Emitting Diodes at Telecommunication Wavelength. , 2021, , .		0
15	Engineering Ill–V Semiconductor Nanowires for Device Applications. Advanced Materials, 2020, 32, e1904359.	21.0	43
16	Surface-States-Modulated High-Performance InAs Nanowire Phototransistor. Journal of Physical Chemistry Letters, 2020, 11, 6413-6419.	4.6	21
17	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	21.0	2
18	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66

#	Article	IF	CITATIONS
19	In situ passivation of GaAsSb nanowires for enhanced infrared photoresponse. Nanotechnology, 2020, 31, 244002.	2.6	13
20	Review on III-V Semiconductor Single Nanowire-Based Room Temperature Infrared Photodetectors. Materials, 2020, 13, 1400.	2.9	44
21	Highly uniform InGaAs/InP quantum well nanowire array-based light emitting diodes. Nano Energy, 2020, 71, 104576.	16.0	23
22	Light-Induced Positive and Negative Photoconductances of InAs Nanowires toward Rewritable Nonvolatile Memory. ACS Applied Electronic Materials, 2019, 1, 1825-1831.	4.3	14
23	Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission. ACS Nano, 2019, 13, 13492-13500.	14.6	22
24	High Fluence Chromium and Tungsten Bowtie Nano-antennas. Scientific Reports, 2019, 9, 13023.	3.3	4
25	Multiwavelength Single Nanowire InGaAs/InP Quantum Well Light-Emitting Diodes. Nano Letters, 2019, 19, 3821-3829.	9.1	32
26	A Tale of Two Tantalum Borides as Potential Saturable Absorbers for Q-Switched Fiber Lasers. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	1
27	Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires. Nanoscale, 2019, 11, 9207-9215.	5.6	18
28	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. ACS Nano, 2019, 13, 3492-3499.	14.6	45
29	Luminescence from poly-Si films and its application to study passivating-contact solar cells. , 2019, , .		0
30	Two Tantalum Borides as Potential Saturable Absorbers for Q-Switched Fiber Lasers. , 2019, , .		0
31	Tungsten Boride Broadband and Thermally Stable Absorber. , 2019, , .		0
32	Diamond Substrate High Fluence Nano-Antennas. , 2019, , .		0
33	Damage analysis of a perfect broadband absorber by a femtosecond laser. Scientific Reports, 2019, 9, 15880.	3.3	5
34	Axial pâ€n junction design and characterization for InP nanowire array solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 237-244.	8.1	22
35	Broadband and thermally stable tungsten boride absorber. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2744.	2.1	5
36	Reducing Zn diffusion in single axial junction InP nanowire solar cells for improved performance. Progress in Natural Science: Materials International, 2018, 28, 178-182.	4.4	23

#	Article	IF	CITATIONS
37	Zirconium Boride as a High Fluence Saturable Absorber for Q-Switched Fiber Lasers. , 2018, , .		Ο
38	Electrically Tunable MnO <inf>2</inf> Based Metasurface. , 2018, , .		0
39	Chromium for High Fluence Bowtie Nano-Antennas. , 2018, , .		0
40	Room Temperature GaAsSb Array Photodetectors. , 2018, , .		1
41	Tungsten Refractory Plasmonic Material for High Fluence Bowtie Nano-antenna. , 2018, , .		0
42	Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy. ACS Nano, 2018, 12, 10374-10382.	14.6	26
43	High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 43291-43298.	8.0	56
44	Sub-Bandgap Luminescence from Doped Polycrystalline and Amorphous Silicon Films and Its Application to Understanding Passivating-Contact Solar Cells. ACS Applied Energy Materials, 2018, 1, 6619-6625.	5.1	18
45	Efficient and Layerâ€Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Typeâ€I Heterostructures. Advanced Materials, 2018, 30, e1803986.	21.0	79
46	Ill–V Semiconductor Single Nanowire Solar Cells: A Review. Advanced Materials Technologies, 2018, 3, 1800005.	5.8	75
47	Zirconium Boride as a High Fluence Saturable Absorber for Q-Switched Fiber Lasers. IEEE Photonics Technology Letters, 2018, 30, 11-14.	2.5	4
48	Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles. Journal Physics D: Applied Physics, 2018, 51, 295106.	2.8	42
49	Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors. Nanotechnology, 2017, 28, 125702.	2.6	14
50	Single n ⁺ -i-n ⁺ InP nanowires for highly sensitive terahertz detection. Nanotechnology, 2017, 28, 125202.	2.6	26
51	Integration of bow-tie plasmonic nano-antennas on tapered fibers. Optics Express, 2017, 25, 8986.	3.4	29
52	Broadband Single-Nanowire Photoconductive Terahertz Detectors. , 2017, , .		0
53	GaAs/AlGaAs core-shell ensemble nanowire photodetectors. , 2017, , .		0
54	Efficiency enhancement of axial junction InP single nanowire solar cells by dielectric coating. Nano Energy, 2016, 28, 106-114.	16.0	58

#	Article	IF	CITATIONS
55	Single nanowire green InGaN/GaN light emitting diodes. Nanotechnology, 2016, 27, 435205.	2.6	16
56	Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors. Nano Letters, 2016, 16, 4925-4931.	9.1	46
57	Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology, 2015, 26, 445202.	2.6	63
58	Spatially Resolved Doping Concentration and Nonradiative Lifetime Profiles in Single Si-Doped InP Nanowires Using Photoluminescence Mapping. Nano Letters, 2015, 15, 3017-3023.	9.1	43
59	Direct Characterization of Axial p-n Junctions for InP Nanowire Array Solar Cells Using Electron Beam-Induced Current. , 2015, , .		1
60	TAILORING THE PROPERTIES OF PHOTONIC NANOJETS BY CHANGING THE MATERIAL AND GEOMETRY OF THE CONCENTRATOR. Progress in Electromagnetics Research Letters, 2014, 48, 7-13.	0.7	11
61	Selective area epitaxial growth of InP nanowire array for solar cell applications. , 2014, , .		1
62	Charnia-like broadband plasmonic nano-antenna. Journal of Modern Optics, 2013, 60, 790-796.	1.3	7
63	Titanium Nano-Antenna for High-Power Pulsed Operation. Journal of Lightwave Technology, 2013, 31, 2459-2466.	4.6	22
64	Controlling the electric field enhancement factor of photonic nanojets by using the magneto-optical effect. Journal of Modern Optics, 2013, 60, 1921-1925.	1.3	5
65	Spiral broadband plasmonic nano-antennas. , 2013, , .		1
66	Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice. Applied Optics, 2013, 52, 854.	1.8	0
67	Arrays of recycled power TM polarized nano-antennas. Optics Express, 2013, 21, 16273.	3.4	1
68	Sierpinski Gasket triangular quantum dot lasers. , 2013, , .		1
69	High power titanium Q-switched nano-antennas. , 2013, , .		0
70	Modal domains and selectivity in large square lasers. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 256-268.	0.7	0
71	Coupling of light from microdisk lasers to nano-antennas with nano-tapers. , 2012, , .		0
72	A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications. Journal Physics D: Applied Physics, 2012, 45, 305102.	2.8	30

#	Article	IF	CITATIONS
73	Merging Photonic Wire Lasers and Nanoantennas. Journal of Lightwave Technology, 2011, 29, 2690-2697.	4.6	13
74	Driving plasmonic nanoantennas with triangular lasers and slot waveguides. Applied Optics, 2011, 50, 2391.	2.1	11
75	COMBINING DIFFERENT IN-PLANE PHOTONIC WIRE LASERS AND COUPLING THE RESULTING FIELD INTO A SINGLE-MODE WAVEGUIDE. Progress in Electromagnetics Research C, 2011, 21, 191-203.	0.9	1
76	High efficiency coupling of light from photonic wire lasers into Nano-antennas. , 2010, , .		0
77	Coupling of light from microdisk lasers into plasmonic nano-antennas. Optics Express, 2009, 17, 20878.	3.4	48