
## Elizabeth Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107536/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Mechanisms Underlying Acute Protection From Cardiac Ischemia-Reperfusion Injury. Physiological<br>Reviews, 2008, 88, 581-609.                                                                                    | 28.8 | 1,220     |
| 2  | The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nature Cell Biology, 2013, 15, 1464-1472.                                                          | 10.3 | 571       |
| 3  | Deoxymyoglobin Is a Nitrite Reductase That Generates Nitric Oxide and Regulates Mitochondrial Respiration. Circulation Research, 2007, 100, 654-661.                                                             | 4.5  | 532       |
| 4  | Guidelines for experimental models of myocardial ischemia and infarction. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2018, 314, H812-H838.                                            | 3.2  | 372       |
| 5  | Diazoxide-Induced Cardioprotection Requires Signaling Through a Redox-Sensitive Mechanism.<br>Circulation Research, 2001, 88, 802-809.                                                                           | 4.5  | 356       |
| 6  | Estrogen Signaling and Cardiovascular Disease. Circulation Research, 2011, 109, 687-696.                                                                                                                         | 4.5  | 350       |
| 7  | Preconditioning Results in <i>S</i> -Nitrosylation of Proteins Involved in Regulation of<br>Mitochondrial Energetics and Calcium Transport. Circulation Research, 2007, 101, 1155-1163.                          | 4.5  | 339       |
| 8  | Phosphorylation of Glycogen Synthase Kinase-3Î <sup>2</sup> During Preconditioning Through a<br>Phosphatidylinositol-3-Kinase–Dependent Pathway Is Cardioprotective. Circulation Research, 2002, 90,<br>377-379. | 4.5  | 334       |
| 9  | Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. Journal of Clinical Investigation, 2010, 120, 3680-3687.                     | 8.2  | 333       |
| 10 | Mitochondrial Function, Biology, and Role in Disease. Circulation Research, 2016, 118, 1960-1991.                                                                                                                | 4.5  | 330       |
| 11 | Ischemic Preconditioning Activates Phosphatidylinositol-3-Kinase Upstream of Protein Kinase C.<br>Circulation Research, 2000, 87, 309-315.                                                                       | 4.5  | 315       |
| 12 | Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circulation Research, 2012, 110, 1596-1603.                                                                                                       | 4.5  | 298       |
| 13 | Hypercontractile Female Hearts Exhibit Increased S -Nitrosylation of the L-Type Ca 2+ Channel α1 Subunit<br>and Reduced Ischemia/Reperfusion Injury. Circulation Research, 2006, 98, 403-411.                    | 4.5  | 272       |
| 14 | Sex Differences in the Phosphorylation of Mitochondrial Proteins Result in Reduced Production of<br>Reactive Oxygen Species and Cardioprotection in Females. Circulation Research, 2010, 106, 1681-1691.         | 4.5  | 267       |
| 15 | Inhibition of Î <sup>-</sup> Protein Kinase C Protects Against Reperfusion Injury of the Ischemic Heart In Vivo.<br>Circulation, 2003, 108, 2304-2307.                                                           | 1.6  | 248       |
| 16 | Role of Mitochondrial Calcium and the Permeability Transition Pore in Regulating Cell Death.<br>Circulation Research, 2020, 126, 280-293.                                                                        | 4.5  | 224       |
| 17 | Primary and Secondary Signaling Pathways in Early Preconditioning That Converge on the Mitochondria to Produce Cardioprotection. Circulation Research, 2004, 94, 7-16.                                           | 4.5  | 221       |
| 18 | The Ins and Outs of Mitochondrial Calcium. Circulation Research, 2015, 116, 1810-1819.                                                                                                                           | 4.5  | 214       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1806-H1813.                              | 3.2  | 209       |
| 20 | Preconditioning: The Mitochondrial Connection. Annual Review of Physiology, 2007, 69, 51-67.                                                                                                                           | 13.1 | 201       |
| 21 | Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. Journal of<br>Molecular and Cellular Cardiology, 2005, 38, 289-297.                                                                 | 1.9  | 198       |
| 22 | S-Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 1693-1705.                                                                                 | 5.4  | 197       |
| 23 | Gender-based differences in mechanisms of protection in myocardial ischemia–reperfusion injury.<br>Cardiovascular Research, 2007, 75, 478-486.                                                                         | 3.8  | 197       |
| 24 | Estrogen receptor-β mediates male-female differences in the development of pressure overload<br>hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H469-H476.                  | 3.2  | 187       |
| 25 | Overexpression of the Cardiac Na <sup>+</sup> /Ca <sup>2+</sup> Exchanger Increases Susceptibility to Ischemia/Reperfusion Injury in Male, but Not Female, Transgenic Mice. Circulation Research, 1998, 83, 1215-1223. | 4.5  | 184       |
| 26 | Transgenic Expression of Bcl-2 Modulates Energy Metabolism, Prevents Cytosolic Acidification During<br>Ischemia, and Reduces Ischemia/Reperfusion Injury. Circulation Research, 2004, 95, 734-741.                     | 4.5  | 183       |
| 27 | Protein <i>S</i> -Nitrosylation and Cardioprotection. Circulation Research, 2010, 106, 285-296.                                                                                                                        | 4.5  | 180       |
| 28 | MICU1 Serves as a Molecular Gatekeeper to Prevent InÂVivo Mitochondrial Calcium Overload. Cell<br>Reports, 2016, 16, 1561-1573.                                                                                        | 6.4  | 175       |
| 29 | Glycogen Synthase Kinase 3 Inhibition Slows Mitochondrial Adenine Nucleotide Transport and<br>Regulates Voltage-Dependent Anion Channel Phosphorylation. Circulation Research, 2008, 103, 983-991.                     | 4.5  | 171       |
| 30 | Regulation of Intracellular and Mitochondrial Sodium in Health and Disease. Circulation Research, 2009, 104, 292-303.                                                                                                  | 4.5  | 165       |
| 31 | Cysteine 203 of Cyclophilin D Is Critical for Cyclophilin D Activation of the Mitochondrial Permeability Transition Pore. Journal of Biological Chemistry, 2011, 286, 40184-40192.                                     | 3.4  | 163       |
| 32 | Super-Suppression of Mitochondrial Reactive Oxygen Species Signaling Impairs Compensatory<br>Autophagy in Primary Mitophagic Cardiomyopathy. Circulation Research, 2014, 115, 348-353.                                 | 4.5  | 163       |
| 33 | Power Grid Protection of the Muscle Mitochondrial Reticulum. Cell Reports, 2017, 19, 487-496.                                                                                                                          | 6.4  | 155       |
| 34 | Simultaneous Measurement of Protein Oxidation and <i>S</i> -Nitrosylation During Preconditioning<br>and Ischemia/Reperfusion Injury With Resin-Assisted Capture. Circulation Research, 2011, 108, 418-426.             | 4.5  | 150       |
| 35 | The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circulation Research, 2016, 118, 994-1007.                                                                                       | 4.5  | 149       |
| 36 | Cardiac-Specific Ablation of the Na + -Ca 2+ Exchanger Confers Protection Against<br>Ischemia/Reperfusion Injury. Circulation Research, 2005, 97, 916-921.                                                             | 4.5  | 148       |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Contractile Work Contributes to Maturation of Energy Metabolism in hiPSC-Derived Cardiomyocytes.<br>Stem Cell Reports, 2018, 10, 834-847.                                                                  | 4.8  | 148       |
| 38 | Characterization of the cardiac succinylome and its role in ischemia–reperfusion injury. Journal of<br>Molecular and Cellular Cardiology, 2015, 88, 73-81.                                                 | 1.9  | 132       |
| 39 | Estrogen Receptor Activation and Cardioprotection in Ischemia Reperfusion Injury. Trends in Cardiovascular Medicine, 2010, 20, 73-78.                                                                      | 4.9  | 130       |
| 40 | Characterization of potential <i>S</i> -nitrosylation sites in the myocardium. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2011, 300, H1327-H1335.                               | 3.2  | 129       |
| 41 | Estrogen Receptor-β Activation Results in S-Nitrosylation of Proteins Involved in Cardioprotection.<br>Circulation, 2009, 120, 245-254.                                                                    | 1.6  | 127       |
| 42 | Mechanisms of erythropoietinâ€mediated cardioprotection during ischemiaâ€reperfusion injury: role of<br>protein kinase C and phosphatidylinositol 3â€kinase signaling. FASEB Journal, 2005, 19, 1323-1325. | 0.5  | 115       |
| 43 | A Redox-Based Mechanism for Cardioprotection Induced by Ischemic Preconditioning in Perfused Rat<br>Heart. Circulation Research, 1995, 77, 424-429.                                                        | 4.5  | 110       |
| 44 | Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. Journal of<br>Molecular and Cellular Cardiology, 2015, 85, 178-182.                                                    | 1.9  | 106       |
| 45 | Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis. PLoS ONE, 2016, 11, e0147792.                                                                                        | 2.5  | 102       |
| 46 | The oncostatic action of melatonin in an ovarian carcinoma cell line. Journal of Pineal Research, 1999, 26, 129-136.                                                                                       | 7.4  | 98        |
| 47 | Sodium Regulation During Ischemia Versus Reperfusion and Its Role in Injury. Circulation Research, 1999, 84, 1469-1470.                                                                                    | 4.5  | 97        |
| 48 | Treatment with an estrogen receptor-beta-selective agonist is cardioprotective. Journal of Molecular and Cellular Cardiology, 2007, 42, 769-780.                                                           | 1.9  | 97        |
| 49 | Unresolved questions from the analysis of mice lacking MCU expression. Biochemical and Biophysical Research Communications, 2014, 449, 384-385.                                                            | 2.1  | 93        |
| 50 | Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nature Communications, 2019, 10, 4509.                                                             | 12.8 | 93        |
| 51 | S-nitrosylation: A radical way to protect the heart. Journal of Molecular and Cellular Cardiology, 2012, 52, 568-577.                                                                                      | 1.9  | 92        |
| 52 | Mysteries of Magnesium Homeostasis. Circulation Research, 2000, 86, 245-248.                                                                                                                               | 4.5  | 85        |
| 53 | Ion Transport and Energetics During Cell Death and Protection. Physiology, 2008, 23, 115-123.                                                                                                              | 3.1  | 85        |
| 54 | Expression of Activated PKC Epsilon (PKC Ϊμ) Protects the Ischemic Heart, without Attenuating Ischemic<br>H+ Production. Journal of Molecular and Cellular Cardiology, 2002, 34, 361-367.                  | 1.9  | 79        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Signaling by S-nitrosylation in the heart. Journal of Molecular and Cellular Cardiology, 2014, 73, 18-25.                                                                                                                           | 1.9 | 79        |
| 56 | Preconditioning Enhanced Glucose Uptake Is Mediated by p38 MAP Kinase Not by Phosphatidylinositol<br>3-Kinase. Journal of Biological Chemistry, 2000, 275, 11981-11986.                                                             | 3.4 | 78        |
| 57 | Inhibition of p38 MAPK α/β reduces ischemic injury and does not block protective effects of preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H499-H508.                               | 3.2 | 78        |
| 58 | Ablation of PLB exacerbates ischemic injury to a lesser extent in female than male mice: protective role of NO. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H683-H690.                            | 3.2 | 75        |
| 59 | Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovascular Research, 2015, 106, 227-236.                                                                             | 3.8 | 74        |
| 60 | Mitochondrial Permeability Transition Pore and Calcium Handling. Methods in Molecular Biology, 2012, 810, 235-242.                                                                                                                  | 0.9 | 72        |
| 61 | Measurement of <i>S</i> -Nitrosylation Occupancy in the Myocardium With Cysteine-Reactive Tandem<br>Mass Tags. Circulation Research, 2012, 111, 1308-1312.                                                                          | 4.5 | 70        |
| 62 | Ca <sup>2+</sup> loading and adrenergic stimulation reveal male/female differences in susceptibility<br>to ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology,<br>2002, 283, H481-H489. | 3.2 | 68        |
| 63 | Why did the NHE inhibitor clinical trials fail?. Journal of Molecular and Cellular Cardiology, 2009, 46, 137-141.                                                                                                                   | 1.9 | 67        |
| 64 | Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2253-62.                       | 7.1 | 65        |
| 65 | Proteomics Research in Cardiovascular Medicine and Biomarker Discovery. Journal of the American<br>College of Cardiology, 2016, 68, 2819-2830.                                                                                      | 2.8 | 64        |
| 66 | Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion<br>injury in mice. Journal of Molecular and Cellular Cardiology, 2017, 107, 41-51.                                               | 1.9 | 63        |
| 67 | Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Cardiovascular Research, 2019, 115, 385-394.                                                  | 3.8 | 63        |
| 68 | Cyclophilin D Modulates Mitochondrial Acetylome. Circulation Research, 2013, 113, 1308-1319.                                                                                                                                        | 4.5 | 62        |
| 69 | S-nitrosylation of TRIM72 at cysteine 144 is critical for protection against oxidation-induced protein degradation and cell death. Journal of Molecular and Cellular Cardiology, 2014, 69, 67-74.                                   | 1.9 | 61        |
| 70 | Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. American Journal<br>of Physiology - Heart and Circulatory Physiology, 2003, 285, H2657-H2662.                                                     | 3.2 | 60        |
| 71 | Regulation of the Ca <sup>2+</sup> Gradient Across the Sarcoplasmic Reticulum in Perfused Rabbit<br>Heart. Circulation Research, 1998, 83, 898-907.                                                                                 | 4.5 | 59        |
| 72 | Essential role of nitric oxide in acute ischemic preconditioning: S-Nitros(yl)ation versus<br>sGC/cGMP/PKG signaling?. Free Radical Biology and Medicine, 2013, 54, 105-112.                                                        | 2.9 | 59        |

| #  | Article                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Pivotal Role of mTORC2 and Involvement of Ribosomal Protein S6 in Cardioprotective Signaling.<br>Circulation Research, 2014, 114, 1268-1280.                                                                                                                                           | 4.5  | 59        |
| 74 | Inhibition of GSK-3Î <sup>2</sup> as a target for cardioprotection: the importance of timing, location, duration and degree of inhibition. Expert Opinion on Therapeutic Targets, 2005, 9, 447-456.                                                                                    | 3.4  | 56        |
| 75 | <i>S</i> -Nitrosylation: Specificity, Occupancy, and Interaction with Other Post-Translational<br>Modifications. Antioxidants and Redox Signaling, 2013, 19, 1209-1219.                                                                                                                | 5.4  | 56        |
| 76 | Multiview confocal super-resolution microscopy. Nature, 2021, 600, 279-284.                                                                                                                                                                                                            | 27.8 | 55        |
| 77 | Correlation of Ischemia-Induced Extracellular and Intracellular Ion Changes to Cell-to-Cell<br>Electrical Uncoupling in Isolated Blood-Perfused Rabbit Hearts. Circulation, 1996, 94, 10-13.                                                                                           | 1.6  | 54        |
| 78 | Cardioprotection leads to novel changes in the mitochondrial proteome. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2010, 298, H75-H91.                                                                                                                       | 3.2  | 53        |
| 79 | CypDâ^'/â^' hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid<br>degradation and pyruvate metabolism. Journal of Molecular and Cellular Cardiology, 2013, 56, 81-90.                                                                             | 1.9  | 53        |
| 80 | Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385. | 3.8  | 53        |
| 81 | G Protein-Coupled Receptor Internalization Signaling Is Required for Cardioprotection in Ischemic Preconditioning. Circulation Research, 2004, 94, 1133-1141.                                                                                                                          | 4.5  | 51        |
| 82 | What makes the mitochondria a killer? Can we condition them to be less destructive?. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 2011, 1813, 1302-1308.                                                                                                                | 4.1  | 51        |
| 83 | Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle.<br>Journal of Biological Chemistry, 2016, 291, 23343-23362.                                                                                                                        | 3.4  | 49        |
| 84 | Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric<br>oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovascular Research, 2016, 110,<br>96-106.                                                                     | 3.8  | 49        |
| 85 | Postconditioning leads to an increase in protein <i>S</i> -nitrosylation. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2014, 306, H825-H832.                                                                                                                  | 3.2  | 48        |
| 86 | Glibenclamide does not abolish the protective effect of preconditioning on stunning in the isolated perfused rat heart. Cardiovascular Research, 1993, 27, 630-637.                                                                                                                    | 3.8  | 46        |
| 87 | The mitochondrial calcium uniporter: Mice can live and die without it. Journal of Molecular and<br>Cellular Cardiology, 2015, 78, 46-53.                                                                                                                                               | 1.9  | 46        |
| 88 | Glyceraldehyde-3-Phosphate Dehydrogenase Acts as a Mitochondrial Trans-S-Nitrosylase in the Heart.<br>PLoS ONE, 2014, 9, e111448.                                                                                                                                                      | 2.5  | 45        |
| 89 | EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. JCI Insight, 2020, 5, .                                                                                                                                                                               | 5.0  | 44        |
| 90 | Estrogen regulation of protein expression and signaling pathways in the heart. Biology of Sex<br>Differences, 2014, 5, 6.                                                                                                                                                              | 4.1  | 43        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Sex differences in metabolic cardiomyopathy. Cardiovascular Research, 2017, 113, 370-377.                                                                                                                 | 3.8  | 42        |
| 92  | Bcl-2 Regulation of Mitochondrial Energetics. Trends in Cardiovascular Medicine, 2005, 15, 283-290.                                                                                                       | 4.9  | 41        |
| 93  | Overexpression of the Na+/H+ exchanger and ischemia-reperfusion injury in the myocardium. American<br>Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2237-H2247.                   | 3.2  | 41        |
| 94  | Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury.<br>American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1513-H1518.         | 3.2  | 38        |
| 95  | Characterization of the sex-dependent myocardial <i>S</i> -nitrosothiol proteome. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H505-H515.                                | 3.2  | 35        |
| 96  | Transient upregulation of PGC-1α diminishes cardiac ischemia tolerance via upregulation of ANT1.<br>Journal of Molecular and Cellular Cardiology, 2010, 49, 693-698.                                      | 1.9  | 32        |
| 97  | Leukocyte-type 12-lipoxygenase-deficient mice show impaired ischemic preconditioning-induced cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1963-H1969. | 3.2  | 31        |
| 98  | Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.<br>Scientific Reports, 2017, 7, 2093.                                                                         | 3.3  | 31        |
| 99  | The Role of Comorbidities in Cardioprotection. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 267-272.                                                                                | 2.0  | 30        |
| 100 | Mechanism of Cardioprotection: What Can We Learn from Females?. Pediatric Cardiology, 2011, 32, 354-359.                                                                                                  | 1.3  | 30        |
| 101 | Cardioprotection and altered mitochondrial adenine nucleotide transport. Basic Research in Cardiology, 2009, 104, 149-156.                                                                                | 5.9  | 29        |
| 102 | Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC-induced protection in heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H2094-H2101.   | 3.2  | 28        |
| 103 | Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovascular Research, 2016, 110, 346-358.                   | 3.8  | 27        |
| 104 | Does the voltage dependent anion channel modulate cardiac ischemia–reperfusion injury?. Biochimica<br>Et Biophysica Acta - Biomembranes, 2012, 1818, 1451-1456.                                           | 2.6  | 26        |
| 105 | Male/female differences in intracellular Na+regulation during ischemia/reperfusion in mouse heart.<br>Journal of Molecular and Cellular Cardiology, 2004, 37, 747-753.                                    | 1.9  | 25        |
| 106 | What can we learn about cardioprotection from the cardiac mitochondrial proteome?.<br>Cardiovascular Research, 2010, 88, 211-218.                                                                         | 3.8  | 25        |
| 107 | Regulation of Mitochondrial Ca <sup>2+</sup> Uptake. Annual Review of Physiology, 2021, 83, 107-126.                                                                                                      | 13.1 | 25        |
| 108 | Cysteine 202 of cyclophilin D is a site of multiple post-translational modifications and plays a role in cardioprotection. Cardiovascular Research, 2021, 117, 212-223.                                   | 3.8  | 24        |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Decreased intracellular pH is not due to increased H <sup>+</sup> extrusion in preconditioned rat<br>hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2257-H2262. | 3.2 | 23        |
| 110 | miR-222 contributes to sex-dimorphic cardiac eNOS expression via ets-1. Physiological Genomics, 2013, 45, 493-498.                                                                                      | 2.3 | 23        |
| 111 | A novel class of cardioprotective small-molecule PTP inhibitors. Pharmacological Research, 2020, 151, 104548.                                                                                           | 7.1 | 23        |
| 112 | Is Na/Ca Exchange during Ischemia and Reperfusion Beneficial or Detrimental?. Annals of the New York<br>Academy of Sciences, 2002, 976, 421-430.                                                        | 3.8 | 22        |
| 113 | Does Inhibition of Glycogen Synthase Kinase Protect in Mice?. Circulation Research, 2008, 103, 226-228.                                                                                                 | 4.5 | 22        |
| 114 | The In Vivo Biology of the Mitochondrial Calcium Uniporter. Advances in Experimental Medicine and Biology, 2017, 982, 49-63.                                                                            | 1.6 | 22        |
| 115 | Mitochondrial Permeability Transition Pore and Calcium Handling. Methods in Molecular Biology, 2018, 1782, 187-196.                                                                                     | 0.9 | 22        |
| 116 | Cell Calcium Levels of Normal and Cystic Fibrosis Nasal Epithelium. Pediatric Research, 1988, 24, 79-84.                                                                                                | 2.3 | 21        |
| 117 | Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. Cell Reports, 2021, 37, 109846.                                                                                            | 6.4 | 20        |
| 118 | Effect of Sodium Nitrite on Ischaemia and Reperfusion-Induced Arrhythmias in Anaesthetized Dogs: Is<br>Protein S-Nitrosylation Involved?. PLoS ONE, 2015, 10, e0122243.                                 | 2.5 | 19        |
| 119 | Role of a TRIM72 ADP-ribosylation cycle in myocardial injury and membrane repair. JCI Insight, 2018, 3, .                                                                                               | 5.0 | 19        |
| 120 | miRâ€181c Activates Mitochondrial Calcium Uptake by Regulating MICU1 in the Heart. Journal of the<br>American Heart Association, 2019, 8, e012919.                                                      | 3.7 | 18        |
| 121 | Adenosine A1 receptor activation increases myocardial protein S-nitrosothiols and elicits protection from ischemia-reperfusion injury in male and female hearts. PLoS ONE, 2017, 12, e0177315.          | 2.5 | 18        |
| 122 | Estrogen-Enhanced Gene Expression of Lipoprotein Lipase in Heart Is Antagonized by Progesterone.<br>Endocrinology, 2008, 149, 711-716.                                                                  | 2.8 | 17        |
| 123 | Inhibit GSK-3β or there's heartbreak dead ahead. Journal of Clinical Investigation, 2004, 113, 1526-1528.                                                                                               | 8.2 | 17        |
| 124 | MICU3 Plays an Important Role in Cardiovascular Function. Circulation Research, 2020, 127, 1571-1573.                                                                                                   | 4.5 | 16        |
| 125 | A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy. Journal of the American Heart Association, 2017, 6, .                                                               | 3.7 | 14        |
| 126 | Human Relaxinâ€⊋ Fusion Protein Treatment Prevents and Reverses Isoproterenolâ€Induced Hypertrophy<br>and Fibrosis in Mouse Heart. Journal of the American Heart Association, 2019, 8, e013465.         | 3.7 | 14        |

| #   | Article                                                                                                                                                                                                                            | IF                 | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 127 | Paradoxical arteriole constriction compromises cytosolic and mitochondrial oxygen delivery in the<br>isolated saline-perfused heart. American Journal of Physiology - Heart and Circulatory Physiology,<br>2018, 315, H1791-H1804. | 3.2                | 13           |
| 128 | Molecular Signature of Nitroso–Redox Balance in Idiopathic Dilated Cardiomyopathies. Journal of the<br>American Heart Association, 2015, 4, e002251.                                                                               | 3.7                | 12           |
| 129 | Signalosomes: delivering cardioprotective signals from GPCRs to mitochondria. American Journal of<br>Physiology - Heart and Circulatory Physiology, 2008, 295, H920-H922.                                                          | 3.2                | 11           |
| 130 | Sex, drugs, and trial design: sex influences the heart and drug responses. Journal of Clinical Investigation, 2014, 124, 2375-2377.                                                                                                | 8.2                | 11           |
| 131 | What matters in Cardiovascular Research? Scientific discovery driving clinical delivery.<br>Cardiovascular Research, 2018, 114, 1565-1568.                                                                                         | 3.8                | 10           |
| 132 | The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. JCI Insight, 2019, 4, .                                                                                   | 5.0                | 10           |
| 133 | How does endothelin-1 cause a sustained increase in intracellular sodium and calcium which lead to hypertrophy?. Journal of Molecular and Cellular Cardiology, 2006, 41, 782-784.                                                  | 1.9                | 7            |
| 134 | Solving mitochondrial mysteries. Journal of Molecular and Cellular Cardiology, 2015, 78, 1-2.                                                                                                                                      | 1.9                | 7            |
| 135 | Cardioprotective Role of Caveolae in Ischemia-Reperfusion Injury. Translational Medicine (Sunnyvale,) Tj ETQq                                                                                                                      | 1 1 0.78431<br>0.4 | 4 rgBT /Over |
| 136 | Did a Classic Preconditioning Study Provide a Clue to the Identity of the Mitochondrial Permeability<br>Transition Pore?. Circulation Research, 2013, 113, 852-855.                                                                | 4.5                | 6            |
| 137 | A knock-in mutation at cysteine 144 of TRIM72 is cardioprotective and reduces myocardial TRIM72 release. Journal of Molecular and Cellular Cardiology, 2019, 136, 95-101.                                                          | 1.9                | 5            |
| 138 | Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2. PLoS ONE, 2022, 17, e0265007.                                             | 2.5                | 5            |
| 139 | Does the cardioprotective effect of Empagliflozin involve inhibition of the sodium-proton exchanger?. Cardiovascular Research, 2021, 117, 2696-2698.                                                                               | 3.8                | 4            |
| 140 | Cyclophilin D regulation of the mitochondrial permeability transition pore. Current Opinion in Physiology, 2022, 25, 100486.                                                                                                       | 1.8                | 4            |
| 141 | Synthesis and evaluation of fluorinated calcium chelators with enhanced relaxation characteristics.<br>Magnetic Resonance in Chemistry, 1992, 30, 723-732.                                                                         | 1.9                | 3            |
| 142 | Ogfod1 deletion increases cardiac beta-alanine levels and protects mice against ischaemia–<br>reperfusion injury. Cardiovascular Research, 2022, 118, 2847-2858.                                                                   | 3.8                | 3            |
| 143 | The regulation and control of mitochondrial homeostasis in changing cardiac tolerance to ischemia-reperfusion injury: a focused issue. Basic Research in Cardiology, 2009, 104, 111-112.                                           | 5.9                | 2            |
| 144 | Sâ€nitrosylation of cyclophilin D alters mitochondrial permeability transition pore. FASEB Journal, 2011, 25, 1033.1.                                                                                                              | 0.5                | 2            |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | DNA Microarray Gene Profiling: A Tool for the Elucidation of Cardioprotective Genes. , 0, , 99-112.                                                                                            |     | Ο         |
| 146 | What You Eat Affects Your Shape. Circulation Research, 2018, 122, 8-10.                                                                                                                        | 4.5 | 0         |
| 147 | Mechanisms of Erythropoietin-Mediated Cardioprotection during Ischemia-Reperfusion Injury: Role of<br>Protein Kinase C Signaling Blood, 2004, 104, 2907-2907.                                  | 1.4 | Ο         |
| 148 | Abstract 851: The Cardioprotective Effect Of Glycogen Synthase Kinase-3β (gsk-3β) Inhibitors Involves<br>Inhibition Of Mitochondrial Adenine Nucleotide Transport. Circulation, 2007, 116, .   | 1.6 | 0         |
| 149 | Cardioprotection increases phosphorylation of the mitochondrial electron transport chain and promotes supercomplex formation. FASEB Journal, 2009, 23, 508.2.                                  | 0.5 | Ο         |
| 150 | Overexpression of myristoylated methionine sulfoxide reductase A in the mouse protects the heart<br>against ischemiaâ€reperfusion injury. FASEB Journal, 2011, 25, 913.10.                     | 0.5 | 0         |
| 151 | Abstract P234: S-nitrosylation of Cyclophilin D Attenuates Mitochondrial Permeability Transition Pore<br>Opening: A Critical Role for Cysteine 203 Residue. Circulation Research, 2011, 109, . | 4.5 | ο         |