
Robert Dantzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 2008, 9, 46-56.	10.2	5,599
2	Twenty years of research on cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 2007, 21, 153-160.	4.1	1,125
3	Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Molecular Psychiatry, 2009, 14, 511-522.	7.9	1,084
4	Cytokine-induced sickness behaviour: mechanisms and implications. Trends in Neurosciences, 2002, 25, 154-159.	8.6	843
5	Sickness behavior as a new target for drug development. Trends in Pharmacological Sciences, 1992, 13, 24-28.	8.7	766
6	Cytokine-Induced Sickness Behavior: Where Do We Stand?. Brain, Behavior, and Immunity, 2001, 15, 7-24.	4.1	726
7	Cytokineâ€Induced Sickness Behavior: Mechanisms and Implications. Annals of the New York Academy of Sciences, 2001, 933, 222-234.	3.8	671
8	Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology, 2011, 36, 426-436.	2.7	626
9	Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiological Reviews, 2018, 98, 477-504.	28.8	613
10	Cytokine, Sickness Behavior, and Depression. Immunology and Allergy Clinics of North America, 2009, 29, 247-264.	1.9	606
11	Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. European Journal of Pharmacology, 2004, 500, 399-411.	3.5	600
12	Cytokine-induced sickness behavior. Brain, Behavior, and Immunity, 2003, 17, 112-118.	4.1	597
13	CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Molecular Psychiatry, 2010, 15, 393-403.	7.9	546
14	Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sciences, 1989, 44, 1995-2008.	4.3	461
15	Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism?. Cancer, 2003, 97, 2919-2925.	4.1	460
16	Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Molecular Brain Research, 1994, 27, 157-162.	2.3	459
17	Interferon-Î ³ and Tumor Necrosis Factor-α Mediate the Upregulation of Indoleamine 2,3-Dioxygenase and the Induction of Depressive-Like Behavior in Mice in Response to Bacillus Calmette-Guérin. Journal of Neuroscience, 2009, 29, 4200-4209.	3.6	441
18	Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology, 2007, 32, 516-531.	2.7	381

#	Article	IF	CITATIONS
19	Stress in Farm Animals: A Need for Reevaluation. Journal of Animal Science, 1983, 57, 6-18.	0.5	376
20	NMDA Receptor Blockade by Ketamine Abrogates Lipopolysaccharide-Induced Depressive-Like Behavior in C57BL/6J Mice. Neuropsychopharmacology, 2013, 38, 1609-1616.	5.4	374
21	Interleukin-10 in the Brain. Critical Reviews in Immunology, 2001, 21, 23.	0.5	321
22	Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent?. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 60-65.	2.8	312
23	Induction of IDO by Bacille Calmette-GueÌrin Is Responsible for Development of Murine Depressive-Like Behavior. Journal of Immunology, 2009, 182, 3202-3212.	0.8	279
24	Septal vasopressin modulates social memory in male rats. Brain Research, 1988, 457, 143-147.	2.2	278
25	Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Research, 1992, 573, 318-320.	2.2	271
26	Early Depressive Symptoms in Cancer Patients Receiving Interleukin 2 and/or Interferon Alfa-2b Therapy. Journal of Clinical Oncology, 2000, 18, 2143-2151.	1.6	270
27	Cytokine, Sickness Behavior, and Depression. Neurologic Clinics, 2006, 24, 441-460.	1.8	269
28	Aging Exacerbates Depressive-like Behavior in Mice in Response to Activation of the Peripheral Innate Immune System. Neuropsychopharmacology, 2008, 33, 2341-2351.	5.4	267
29	A Cytokine-Based Neuroimmunologic Mechanism of Cancer-Related Symptoms. NeuroImmunoModulation, 2004, 11, 279-292.	1.8	266
30	The neuroimmune basis of fatigue. Trends in Neurosciences, 2014, 37, 39-46.	8.6	254
31	Cytokines and depression: The need for a new paradigm. Brain, Behavior, and Immunity, 2003, 17, 119-124.	4.1	241
32	Symposium on "Indices to Measure Animal Well-Being― Journal of Animal Science, 1986, 62, 1776-1786.	0.5	237
33	Cytokines and Sickness Behavior. Annals of the New York Academy of Sciences, 1998, 840, 586-590.	3.8	237
34	Molecular Basis of Sickness Behaviora. Annals of the New York Academy of Sciences, 1998, 856, 132-138.	3.8	227
35	Temporal and spatial relationships between lipopolysaccharide-induced expression of fos, interleukin-1 β and inducible nitric oxide synthase in rat brain. Neuroscience, 1999, 89, 535-548.	2.3	220
36	Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain, Behavior, and Immunity, 2004, 18, 205-213.	4.1	217

#	Article	IF	CITATIONS
37	Lipopolysaccharide and Interleukin-1 Depress Food-Motivated Behavior in Mice by a Vagal-Mediated Mechanism. Brain, Behavior, and Immunity, 1995, 9, 242-246.	4.1	205
38	Role of IL-6 in cytokine-induced sickness behavior a study with IL-6 deficient mice. Physiology and Behavior, 2000, 70, 367-373.	2.1	204
39	Regulation of IGF-I function by proinflammatory cytokines: At the interface of immunology and endocrinology. Cellular Immunology, 2008, 252, 91-110.	3.0	202
40	Putative Neuroprotective and Neurotoxic Kynurenine Pathway Metabolites Are Associated with Hippocampal and Amygdalar Volumes in Subjects with Major Depressive Disorder. Neuropsychopharmacology, 2015, 40, 463-471.	5.4	199
41	The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. European Journal of Neuroscience, 2000, 12, 4434-4446.	2.6	197
42	A new concept in neurodegeneration: TNFα is a silencer of survival signals. Trends in Neurosciences, 2000, 23, 175-180.	8.6	195
43	A new mechanism of neurodegeneration: A proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9879-9884.	7.1	189
44	Social factors and individual vulnerability to chronic stress exposure. Neuroscience and Biobehavioral Reviews, 2005, 29, 67-81.	6.1	188
45	Social and individual recognition in rodents: Methodological aspects and neurobiological bases. Behavioural Processes, 1994, 33, 59-87.	1.1	187
46	Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R93-R98.	1.8	187
47	Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy. Psychoneuroendocrinology, 2001, 26, 797-808.	2.7	182
48	Synergy between tumor necrosis factor \hat{I}_{\pm} and interleukin-1 in the induction of sickness behavior in mice. Psychoneuroendocrinology, 1994, 19, 197-207.	2.7	180
49	Differential Effects of Lipopolysaccharide on Pup Retrieving and Nest Building in Lactating Mice. Brain, Behavior, and Immunity, 1997, 11, 107-118.	4.1	175
50	Cancer exosomes induce tumor innervation. Nature Communications, 2018, 9, 4284.	12.8	169
51	Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches. Current Topics in Behavioral Neurosciences, 2016, 31, 117-138.	1.7	168
52	Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. Journal of Neuroinflammation, 2010, 7, 93.	7.2	166
53	Central injection of IL-10 antagonizes the behavioural effects of lipopolysaccharide in rats. Psychoneuroendocrinology, 1999, 24, 301-311.	2.7	162
54	Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain, Behavior, and Immunity, 2015, 46, 55-59.	4.1	162

#	Article	IF	CITATIONS
55	Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Research, 1990, 519, 150-157.	2.2	159
56	In Vivo and in Vitro Evidence for the Involvement of Tumor Necrosis Factor-α in the Induction of Leptin by Lipopolysaccharide*. Endocrinology, 1998, 139, 2278-2283.	2.8	159
57	Resilience and immunity. Brain, Behavior, and Immunity, 2018, 74, 28-42.	4.1	143
58	Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain, Behavior, and Immunity, 2008, 22, 1087-1095.	4.1	142
59	Vagotomy blocks behavioural effects of interleukin-1 injected via the intraperitoneal route but not via other systemic routes. NeuroReport, 1996, 7, 2823.	1.2	140
60	Social recognition does not involve vasopressinergic neurotransmission in female rats. Brain Research, 1990, 535, 301-304.	2.2	139
61	Vagotomy attenuates behavioural effects of interleukin-1 injected peripherally but not centrally. NeuroReport, 1996, 7, 1485-1488.	1.2	139
62	Mood Alterations During Interferon-Alfa Therapy in Patients With Chronic Hepatitis C. Journal of Clinical Psychiatry, 2005, 66, 1050-1057.	2.2	139
63	Behavioural effects of peripherally injected interleukin-1: role of prostaglandins. Brain Research, 1991, 542, 330-335.	2.2	136
64	Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain, Behavior, and Immunity, 2016, 53, 39-48.	4.1	136
65	Is there a role for immune-to-brain communication in schizophrenia?. Psychopharmacology, 2016, 233, 1559-1573.	3.1	134
66	Mechanisms of chemotherapy-induced behavioral toxicities. Frontiers in Neuroscience, 2015, 9, 131.	2.8	133
67	Timing and Specificity of the Cognitive Changes Induced by Interleukin-2 and Interferon-α Treatments in Cancer Patients. Psychosomatic Medicine, 2001, 63, 376-386.	2.0	132
68	Expression of type I and type II interleukin-1 receptors in mouse brain. Molecular Brain Research, 1994, 27, 63-70.	2.3	130
69	Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. Journal of Neuroinflammation, 2011, 8, 12.	7.2	127
70	Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1β in the rat. Psychopharmacology, 2001, 154, 50-60.	3.1	125
71	Inflammation Models of Depression in Rodents: Relevance to Psychotropic Drug Discovery. International Journal of Neuropsychopharmacology, 2016, 19, pyw028.	2.1	124
72	Expression and regulation of interleukin-1 receptors in the brain. Role in cytokines-induced sickness behavior. Journal of Neuroimmunology, 2002, 125, 5-14.	2.3	123

#	Article	IF	CITATIONS
73	Adrenalectomy enhances pro-inflammatory cytokines gene expression, in the spleen, pituitary and brain of mice in response to lipopolysaccharide. Molecular Brain Research, 1996, 36, 53-62.	2.3	121
74	Behavioural evidence for partial agonist properties of RO 15-1788, a benzodiazepine receptor antagonist. European Journal of Pharmacology, 1982, 81, 655-658.	3.5	120
75	Inactivation of the Cerebral NFκB Pathway Inhibits Interleukin-1β-Induced Sickness Behavior and c-Fos Expression in Various Brain Nuclei. Neuropsychopharmacology, 2005, 30, 1492-1499.	5.4	118
76	Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Molecular Psychiatry, 2019, 24, 1523-1532.	7.9	118
77	Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX3CR1)-deficient mice. Brain, Behavior, and Immunity, 2013, 31, 134-142.	4.1	117
78	Alcoholism and inflammation: Neuroimmunology of behavioral and mood disorders. Brain, Behavior, and Immunity, 2011, 25, S13-S20.	4.1	115
79	Translational approaches to treatment-induced symptoms in cancer patients. Nature Reviews Clinical Oncology, 2012, 9, 414-426.	27.6	115
80	Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression?. Journal of Neural Transmission, 2014, 121, 925-932.	2.8	114
81	Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors. Journal of Neuroinflammation, 2013, 10, 87.	7.2	109
82	Role of interleukin-1beta and tumour necrosis factor-alpha in lipopolysaccharide-induced sickness behaviour: a study with interleukin-1 type I receptor-deficient mice. European Journal of Neuroscience, 2000, 12, 4447-4456.	2.6	109
83	The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Frontiers in Behavioral Neuroscience, 2018, 12, 78.	2.0	108
84	Expression and localization of p80 and p68 interleukin-1 receptor proteins in the brain of adult mice. Journal of Neuroimmunology, 1999, 93, 194-202.	2.3	107
85	Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology, 2015, 52, 200-211.	2.7	106
86	Somatization: A psychoneuroimmune perspective. Psychoneuroendocrinology, 2005, 30, 947-952.	2.7	105
87	Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures. Journal of Neuroinflammation, 2010, 7, 43.	7.2	105
88	Spatio-temporal differences in the profile of murine brain expression of proinflammatory cytokines and indoleamine 2,3-dioxygenase in response to peripheral lipopolysaccharide administration. Journal of Neuroimmunology, 2008, 200, 90-99.	2.3	104
89	IL-1β Impairs Insulin-Like Growth Factor I-Induced Differentiation and Downstream Activation Signals of the Insulin-Like Growth Factor I Receptor in Myoblasts. Journal of Immunology, 2004, 172, 7713-7720.	0.8	102
90	Stress Downregulates Lipopolysaccharide-Induced Expression of Proinflammatory Cytokines in the Spleen, Pituitary, and Brain of Mice. Brain, Behavior, and Immunity, 1995, 9, 292-303.	4.1	101

#	Article	IF	CITATIONS
91	Influence of stressor predictability and behavioral control on lymphocyte reactivity, antibody responses and neuroendocrine activation in rats. Physiology and Behavior, 1988, 43, 577-583.	2.1	99
92	Proinflammatory Cytokine Impairment of Insulin-Like Growth Factor I-Induced Protein Synthesis in Skeletal Muscle Myoblasts Requires Ceramide. Endocrinology, 2004, 145, 4592-4602.	2.8	99
93	Depression and Inflammation: An Intricate Relationship. Biological Psychiatry, 2012, 71, 4-5.	1.3	99
94	Cytokine-Hormone Interactions: Tumor Necrosis Factor α Impairs Biologic Activity and Downstream Activation Signals of the Insulin-Like Growth Factor I Receptor in Myoblasts. Endocrinology, 2003, 144, 2988-2996.	2.8	98
95	Vagotomy attenuates the behavioural but not the pyrogenic effects of interleukin-1 in rats. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 127-132.	2.8	97
96	Sickness behavior in birds caused by peripheral or central injection of endotoxin. Physiology and Behavior, 1993, 53, 343-348.	2.1	96
97	Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial. Neuropsychopharmacology, 2017, 42, 801-810.	5.4	96
98	Bacille Calmetteâ€Guérin Inoculation Induces Chronic Activation of Peripheral and Brain Indoleamine 2,3â€Dioxygenase in Mice. Journal of Infectious Diseases, 2005, 192, 537-544.	4.0	95
99	In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1β in the murine brain. Brain, Behavior, and Immunity, 2008, 22, 234-244.	4.1	95
100	Interleukin-1 induces conditioned taste aversion in rats: a possible explanation for its pituitary-adrenal stimulating activity. Brain Research, 1988, 473, 369-371.	2.2	94
101	Behavioral effects of peripheral administration of arginine vasopressin: a review of our search for a mode of action and a hypothesis. Psychoneuroendocrinology, 1984, 9, 319-341.	2.7	93
102	Central and peripheral prostaglandins are involved in sickness behavior in birds. Physiology and Behavior, 1993, 53, 127-131.	2.1	92
103	Role of Kynurenine pathway and its metabolites in mood disorders: A systematic review and meta-analysis of clinical studies. Neuroscience and Biobehavioral Reviews, 2018, 92, 477-485.	6.1	90
104	Hypophysectomy Inhibits the Synthesis of Tumor Necrosis Factor α by Rat Macrophages: Partial Restoration by Exogenous Growth Hormone or Interferon γ*. Endocrinology, 1991, 128, 989-996.	2.8	89
105	Pifithrin-μ Prevents Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Research, 2017, 77, 742-752.	0.9	89
106	Mechanisms of poststroke fatigue. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 287-293.	1.9	86
107	Uncoupling of interleukinâ€6 from its signalling pathway by dietary nâ€3â€polyunsaturated fatty acid deprivation alters sickness behaviour in mice. European Journal of Neuroscience, 2008, 28, 1877-1886.	2.6	85
108	Microglial/macrophage GRK2 determines duration of peripheral IL-1β-induced hyperalgesia: Contribution of spinal cord CX3CR1, p38 and IL-1 signaling. Pain, 2010, 150, 550-560.	4.2	85

#	Article	IF	CITATIONS
109	Low Nociceptor GRK2 Prolongs Prostaglandin E ₂ Hyperalgesia via Biased cAMP Signaling to Epac/Rap1, Protein Kinase Cε, and MEK/ERK. Journal of Neuroscience, 2010, 30, 12806-12815.	3.6	85
110	Reduction in food and water intake induced by microinjection of interleukin-1β in the ventromedial hypothalamus of the rat. Physiology and Behavior, 1994, 56, 1031-1036.	2.1	84
111	Resolution of inflammation-induced depression requires T lymphocytes and endogenous brain interleukin-10 signaling. Neuropsychopharmacology, 2018, 43, 2597-2605.	5.4	83
112	Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology, 2021, 131, 105295.	2.7	83
113	Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1-induced sickness behavior. Brain Research, 1991, 557, 115-120.	2.2	82
114	IL-1β-Mediated Innate Immunity Is Amplified in the <i>db/db</i> Mouse Model of Type 2 Diabetes. Journal of Immunology, 2005, 174, 4991-4997.	0.8	82
115	Effect of immune activation on the kynurenine pathway and depression symptoms $\hat{a} \in A$ systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 2020, 118, 514-523.	6.1	82
116	Mechanisms of the Behavioural Effects of Cytokines. Advances in Experimental Medicine and Biology, 1999, 461, 83-105.	1.6	81
117	Intracerebroventricular administration of HIV-1 Tat induces brain cytokine and indoleamine 2,3-dioxygenase expression: A possible mechanism for AIDS comorbid depression. Brain, Behavior, and Immunity, 2011, 25, 1569-1575.	4.1	81
118	Activation of the kynurenine pathway is associated with striatal volume in major depressive disorder. Psychoneuroendocrinology, 2015, 62, 54-58.	2.7	80
119	Exercise, inflammation, and fatigue in cancer survivors. Exercise Immunology Review, 2016, 22, 82-93.	0.4	80
120	Differential effects of IL-1ra on sickness behavior and weight loss induced by IL-1 in rats. Brain Research, 1995, 677, 171-176.	2.2	79
121	Innate immunity at the forefront of psychoneuroimmunology. Brain, Behavior, and Immunity, 2004, 18, 1-6.	4.1	79
122	Growth Hormone, Growth Factors and Hematopoiesis. Hormone Research, 1996, 45, 38-45.	1.8	78
123	Central mediation of the effects of interleukin-1 on social exploration and body weight in mice. Psychoneuroendocrinology, 1997, 22, 1-11.	2.7	78
124	Age-Associated Loss of Bone Marrow Hematopoietic Cells Is Reversed by GH and Accompanies Thymic Reconstitution. Endocrinology, 2002, 143, 690-699.	2.8	78
125	Stress, stereotypies and welfare. Behavioural Processes, 1991, 25, 95-102.	1.1	77
126	Chronic psychosocial stress down-regulates central cytokines mRNA. Brain Research Bulletin, 2003, 62, 173-178.	3.0	77

#	Article	IF	CITATIONS
127	Nuclear factor κB nuclear translocation as a crucial marker of brain response to interleukin-1. A study in rat and interleukin-1 type I deficient mouse. Journal of Neurochemistry, 2004, 87, 1024-1036.	3.9	76
128	A Biological Substrate for Somatoform Disorders: Importance of Pathophysiology. Psychosomatic Medicine, 2007, 69, 850-854.	2.0	76
129	Individually distinctive odours represent individual conspecifics in rats. Animal Behaviour, 1997, 53, 935-944.	1.9	74
130	NFκB Activates <i>in vivo</i> the Synthesis of Inducible Cox-2 in the Brain. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1047-1059.	4.3	73
131	LPS-induced indoleamine 2,3-dioxygenase is regulated in an interferon-Î ³ -independent manner by a JNK signaling pathway in primary murine microglia. Brain, Behavior, and Immunity, 2010, 24, 201-209.	4.1	72
132	Immune-based strategies for mood disorders: facts and challenges. Expert Review of Neurotherapeutics, 2018, 18, 139-152.	2.8	72
133	Interleukin-1 mediates behavioural but not metabolic effects of tumor necrosis factor α in mice. European Journal of Pharmacology, 1991, 209, 281-283.	3.5	70
134	Cytokines, Stress, and Depression. Advances in Experimental Medicine and Biology, 1999, 461, 317-329.	1.6	68
135	IL-10 promotes survival of microglia without activating Akt. Journal of Neuroimmunology, 2002, 122, 9-19.	2.3	68
136	De-arousal properties of stereotyped behaviour: Evidence from pituitary—Adrenal correlates in pigs. Applied Animal Ethology, 1983, 10, 233-244.	0.5	66
137	How the immune and nervous systems interact during disease-associated anorexia. Nutrition, 2001, 17, 664-668.	2.4	66
138	Effects of insulin-like growth factor-I on cytokine-induced sickness behavior in mice. Brain, Behavior, and Immunity, 2006, 20, 57-63.	4.1	66
139	Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. Journal of Cell Science, 2007, 120, 578-585.	2.0	66
140	Lipopolysaccharide Reduces Incentive Motivation While Boosting Preference for High Reward in Mice. Neuropsychopharmacology, 2014, 39, 2884-2890.	5.4	66
141	Kynurenine pathway metabolites are associated with hippocampal activity during autobiographical memory recall in patients with depression. Brain, Behavior, and Immunity, 2016, 56, 335-342.	4.1	65
142	Rat microglial cells secrete predominantly the precursor of interleukin-1Î ² in response to lipopolysaccharide. European Journal of Neuroscience, 2001, 14, 609-617.	2.6	64
143	Time-course of the expression of inflammatory cytokines and matrix metalloproteinases in the striatum and mesencephalon of mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a dopaminergic neurotoxin. Neuroscience Letters, 2003, 349, 191-195.	2.1	64
144	Pituitary-adrenal consequences of adjunctive activities in pigs. Hormones and Behavior, 1981, 15, 386-395.	2.1	63

#	Article	IF	CITATIONS
145	Effects of lipopolysaccharide on food-motivated behavior in the rat are not blocked by an interleukin-1 receptor antagonist. Neuroscience Letters, 1992, 145, 83-86.	2.1	62
146	Regulation of Myeloid Growth and Differentiation by the Insulin-Like Growth Factor I Receptor1. Endocrinology, 1997, 138, 362-368.	2.8	62
147	Voluntary Wheel Running Reverses Age-Induced Changes in Hippocampal Gene Expression. PLoS ONE, 2011, 6, e22654.	2.5	61
148	Upregulation of neuronal kynurenine 3-monooxygenase mediates depression-like behavior in a mouse model of neuropathic pain. Brain, Behavior, and Immunity, 2017, 66, 94-102.	4.1	60
149	Compared effects of cold ambient temperature and cytokines on macronutrient intake in rats. Physiology and Behavior, 1995, 57, 869-873.	2.1	59
150	Proinflammatory cytokines block growth of breast cancer cells by impairing signals from a growth factor receptor. Cancer Research, 2002, 62, 4746-56.	0.9	59
151	Behavioral Effects of Cytokines: An Insight into Mechanisms of Sickness Behavior. Methods in Neurosciences, 1993, , 130-150.	0.5	58
152	Mechanisms of the Behavioral Effects of Interleukin 1 Role of Prostaglandins and CRF. Annals of the New York Academy of Sciences, 1992, 650, 268-275.	3.8	57
153	Insulin-like growth factor-I enhances the biological activity of brain-derived neurotrophic factor on cerebrocortical neurons. Journal of Neuroimmunology, 2006, 179, 186-190.	2.3	57
154	Cisplatin educates CD8+ T cells to prevent and resolve chemotherapy-induced peripheral neuropathy in mice. Pain, 2019, 160, 1459-1468.	4.2	57
155	The macrophage-activating properties of growth hormone. Cellular and Molecular Neurobiology, 1992, 12, 499-510.	3.3	56
156	Interleukin-10 resolves pain hypersensitivity induced by cisplatin by reversing sensory neuron hyperexcitability. Pain, 2020, 161, 2344-2352.	4.2	55
157	An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line. Molecular Brain Research, 1996, 38, 222-232.	2.3	54
158	TNFα-induced sickness behavior in mice with functional 55ÂkD TNF receptors is blocked by central IGF-I. Journal of Neuroimmunology, 2007, 187, 55-60.	2.3	54
159	Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. Journal of Neuroinflammation, 2011, 8, 179.	7.2	54
160	The Immune-Endocrine Loop during Aging: Role of Growth Hormone and Insulin-Like Growth Factor-I. NeuroImmunoModulation, 1999, 6, 56-68.	1.8	51
161	Central administration of insulin-like growth factor-1 inhibits lipopolysaccharide-induced sickness behavior in mice. NeuroReport, 1999, 10, 289-292.	1.2	51
162	Protocol for the insight study: a randomised controlled trial of single-dose tocilizumab in patients with depression and low-grade inflammation. BMJ Open, 2018, 8, e025333.	1.9	51

#	Article	IF	CITATIONS
163	Insulin Growth Factorâ€I Inhibits Apoptosis in Hematopoietic: Progenitor Cells Implications in Thymic Aging ^a . Annals of the New York Academy of Sciences, 1998, 840, 518-524.	3.8	49
164	Immunology discovers physiology. Veterinary Immunology and Immunopathology, 1994, 43, 157-165.	1.2	48
165	Chronic administration of tianeptine balances lipopolysaccharide-induced expression of cytokines in the spleen and hypothalamus of rats. Psychoneuroendocrinology, 2004, 29, 778-790.	2.7	48
166	Cerebral lateralization of olfactory-mediated affective processes in rats. Behavioural Brain Research, 1990, 40, 53-60.	2.2	47
167	Molecular Identification of Two Types of Interleukin-1 Receptors in the Murine Pituitary Gland. Journal of Neuroendocrinology, 1993, 5, 213-219.	2.6	47
168	Defect in Interleukin-1β Secretion Prevents Sickness Behavior in C3H/HeJ Mice. Physiology and Behavior, 1997, 61, 873-878.	2.1	47
169	The taste of sickness: Lipopolysaccharide-induced finickiness in rats. Physiology and Behavior, 2005, 84, 437-444.	2.1	47
170	Osmotic stress mimics effects of vasopressin on learned behaviour. Nature, 1985, 315, 750-752.	27.8	46
171	Central injections of arginine vasopressin prolong extinction of active avoidance. Peptides, 1986, 7, 213-218.	2.4	46
172	Chronic intracerebral infusions of vasopressin and vasopressin antagonist modulate social recognition in rat. Brain Research, 1992, 572, 261-264.	2.2	46
173	Endogenous glucocorticoids down regulate central effects of interleukin-1 β on body temperature and behaviour in mice. Brain Research, 1995, 702, 173-180.	2.2	46
174	Systemic Capsaicin Pretreatment Fails to Block the Decrease in Food-Motivated Behavior Induced by Lipopolysaccharide and Interleukin-1 β. Brain Research Bulletin, 1997, 42, 443-449.	3.0	46
175	Chronic treatment with the antidepressant tianeptine attenuates lipopolysaccharide-induced Fos expression in the rat paraventricular nucleus and HPA axis activation. Psychoneuroendocrinology, 2003, 28, 19-34.	2.7	46
176	Aging leads to prolonged duration of inflammation-induced depression-like behavior caused by Bacillus Calmette-GuA©rin. Brain, Behavior, and Immunity, 2013, 32, 63-69.	4.1	46
177	Sleep disturbance and kynurenine metabolism in depression. Journal of Psychosomatic Research, 2017, 99, 1-7.	2.6	46
178	Peripheral and central kynurenine pathway abnormalities in major depression. Brain, Behavior, and Immunity, 2022, 101, 136-145.	4.1	46
179	Chronic Mild Stress in Mice Decreases Peripheral Cytokine and Increases Central Cytokine Expression Independently of IL-10 Regulation of the Cytokine Network. NeuroImmunoModulation, 2002, 10, 359-366.	1.8	44

180 Editorial. Psychoneuroendocrinology, 2009, 34, 1.

2.7 44

#	Article	IF	CITATIONS
181	GRK2 in sensory neurons regulates epinephrine-induced signalling and duration of mechanical hyperalgesia. Pain, 2011, 152, 1649-1658.	4.2	43
182	Role of Interferon-Î ³ in Counteracting the Suppressive Effects of Transforming Growth Factor-Î ² 2 and Glucocorticoids on the Production of Tumor Necrosis Factor-α. Journal of Leukocyte Biology, 1990, 48, 473-481.	3.3	42
183	Cytokine Production by Spleen Cells after Social Defeat in Mice: Activation of T Cells and Reduced Inhibition by Glucocorticoids. Stress, 2004, 7, 55-61.	1.8	42
184	The associations of adiposity, physical activity and inflammation with fatigue in older adults. Brain, Behavior, and Immunity, 2011, 25, 1482-1490.	4.1	42
185	The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology, 2019, 236, 2867-2880.	3.1	42
186	Microglia depletion fails to abrogate inflammation-induced sickness in mice and rats. Journal of Neuroinflammation, 2020, 17, 172.	7.2	42
187	Importance of fighting in the immune effects of social defeat. Physiology and Behavior, 2003, 80, 351-357.	2.1	41
188	Interleukin-1β mediates the memory impairment associated with a delayed type hypersensitivity response to bacillus Calmette–Guérin in the rat hippocampus. Brain, Behavior, and Immunity, 2004, 18, 223-230.	4.1	41
189	Role of neuropeptides in learning versus performance: Focus on vasopressin. Brain Research Bulletin, 1989, 23, 359-364.	3.0	40
190	The type 1 TNF receptor and its associated adapter protein, FAN, are required for TNFα-induced sickness behavior. Psychopharmacology, 2009, 201, 549-556.	3.1	40
191	HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner. Journal of Neuroinflammation, 2011, 8, 88.	7.2	40
192	Peripheral indoleamine 2,3-dioxygenase 1 is required for comorbid depression-like behavior but does not contribute to neuropathic pain in mice. Brain, Behavior, and Immunity, 2015, 46, 147-153.	4.1	40
193	Kynurenic acid is reduced in females and oral contraceptive users: Implications for depression. Brain, Behavior, and Immunity, 2018, 67, 59-64.	4.1	40
194	C-Jun N-Terminal Kinase Mediates Tumor Necrosis Factor-α Suppression of Differentiation in Myoblasts. Endocrinology, 2006, 147, 4363-4373.	2.8	39
195	Dual Effect of Central Injection of Recombinant Rat Interleukin-4 on Lipopolysaccharide-Induced Sickness Behavior in Rats. Neuropsychopharmacology, 2002, 26, 86-93.	5.4	38
196	Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice. Brain, Behavior, and Immunity, 2013, 29, 113-123.	4.1	38
197	Cytokine Actions on Behavior. Neuroscience Intelligence Unit, 1996, , 117-144.	0.5	37
198	Is conditioned immunosuppression truly conditioned?. Behavioral and Brain Sciences, 1986, 9, 758-760.	0.7	36

#	Article	IF	CITATIONS
199	Ethological study of the effects of tetrahydroaminoacridine (THA) on social recognition in rats. Psychopharmacology, 1994, 114, 644-650.	3.1	36
200	Tumor necrosis factorα and insulin-like growth factor-I in the brain: Is the whole greater than the sum of its parts?. Journal of Neuroimmunology, 2001, 119, 151-165.	2.3	36
201	Inhibition of vagally mediated immune-to-brain signaling by vanadyl sulfate speeds recovery from sickness. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15184-15189.	7.1	36
202	Age-Associated Loss of Bone Marrow Hematopoietic Cells Is Reversed by GH and Accompanies Thymic Reconstitution. Endocrinology, 2002, 143, 690-699.	2.8	36
203	Effect of intracerebroventricular administration of vasopressin on stress-induced hyperthermia in rats. Physiology and Behavior, 1996, 60, 417-424.	2.1	35
204	Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge. PLoS ONE, 2016, 11, e0150858.	2.5	35
205	Elevated Cyclin E Levels, Inactive Retinoblastoma Protein, and Suppression of the p27 ^{KIP1} Inhibitor Characterize Early Development of Promyeloid Cells into Macrophages. Molecular and Cellular Biology, 1999, 19, 6229-6239.	2.3	34
206	Vasopressin and behavior: from memory to olfaction. Regulatory Peptides, 1993, 45, 121-125.	1.9	33
207	The rank assessed in a food competition test influences subsequent reactivity to immune and social challenges in mice. Brain, Behavior, and Immunity, 2004, 18, 468-475.	4.1	33
208	Novel activity of an anti-inflammatory cytokine: IL-10 prevents TNFα-induced resistance to IGF-I in myoblasts. Journal of Neuroimmunology, 2007, 188, 48-55.	2.3	33
209	Acute hypoglycemia causes depressive-like behaviors in mice. Metabolism: Clinical and Experimental, 2012, 61, 229-236.	3.4	33
210	Tumor-Associated Fatigue in Cancer Patients Develops Independently of IL1 Signaling. Cancer Research, 2018, 78, 695-705.	0.9	33
211	Conditioned taste aversion with lipopolysaccharide and peptidoglycan does not activate cytokine gene expression in the spleen and hypothalamus of mice. Brain, Behavior, and Immunity, 2004, 18, 186-200.	4.1	32
212	Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews Neuroscience, 2010, 11, 718-726.	10.2	32
213	Somatolactogens, Somatomedins, and Immunity. Journal of Dairy Science, 1993, 76, 2437-2450.	3.4	31
214	Long-term modulation of glucose utilization by IL-11± and TNF-1± in astrocytes: Na+pump activity as a potential target via distinct signaling mechanisms. Glia, 2002, 39, 10-18.	4.9	31
215	Tumor Necrosis Factor α Inhibits Cyclin A Expression and Retinoblastoma Hyperphosphorylation Triggered by Insulin-like Growth Factor-I Induction of New E2F-1 Synthesis. Journal of Biological Chemistry, 2004, 279, 7438-7446.	3.4	29
216	Arginine Vasopressin, Stress, and Memory. Annals of the New York Academy of Sciences, 1985, 444, 194-202.	3.8	28

#	Article	IF	CITATIONS
217	Central Interleukin-1 Receptors as Mediators of Sickness. Annals of the New York Academy of Sciences, 1997, 823, 234-246.	3.8	28
218	Modulation of the behavioural effects of Interleukin-1 in mice by Nitric Oxide. NeuroReport, 1992, 3, 207-209.	1.2	27
219	Inflammation-induced motivational changes: perspective gained by evaluating positive and negative valence systems. Current Opinion in Behavioral Sciences, 2018, 22, 90-95.	3.9	27
220	Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology, 2019, 44, 364-371.	5.4	27
221	A behaviorally active dose of lipopolysaccharide increases sensory neuropeptides levels in mouse spinal cord. Neuroscience Letters, 1994, 173, 205-209.	2.1	26
222	Voluntary Wheel Running Does Not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice. NeuroImmunoModulation, 2014, 21, 52-63.	1.8	26
223	Neuroimmune mechanisms of behavioral alterations in a syngeneic murine model of human papilloma virus-related head and neck cancer. Psychoneuroendocrinology, 2017, 79, 59-66.	2.7	26
224	Blockade of brain type II interleukin-1 receptors potentiates IL1β-induced anorexia in mice. Neuroscience Letters, 1998, 246, 101-104.	2.1	25
225	Central injection of interleukin-13 potentiates LPS-induced sickness behavior in rats. NeuroReport, 2001, 12, 3979-3983.	1.2	25
226	Prototypical anti-inflammatory cytokine IL-10 prevents loss of IGF-I-induced myogenin protein expression caused by IL-1β. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E709-E718.	3.5	25
227	Safety, tolerability, and biomarkers of the treatment of mice with aerosolized Toll-like receptor ligands. Frontiers in Pharmacology, 2014, 5, 8.	3.5	25
228	Interleukin-1β-converting enzyme-deficient mice resist central but not systemic endotoxin-induced anorexia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1829-R1833.	1.8	24
229	Cytokines and depression: An update. Brain, Behavior, and Immunity, 2002, 16, 501-502.	4.1	24
230	CD3+ T cells are critical for the resolution of comorbid inflammatory pain and depression-like behavior. Neurobiology of Pain (Cambridge, Mass), 2020, 7, 100043.	2.5	24
231	Effects of diazepam on behaviour suppressed by extinction in pigs. Pharmacology Biochemistry and Behavior, 1977, 6, 157-161.	2.9	23
232	Specificity of aversive stimulus properties of vasopressin. Psychopharmacology, 1985, 87, 238-241.	3.1	23
233	G Protein-Coupled Receptor Kinase 6 Acts as a Critical Regulator of Cytokine-Induced Hyperalgesia by Promoting Phosphatidylinositol 3-Kinase and Inhibiting p38 Signaling. Molecular Medicine, 2012, 18, 556-564.	4.4	23
234	Interleukin 6-independent metabolic reprogramming as a driver of cancer-related fatigue. Brain, Behavior, and Immunity, 2020, 88, 230-241.	4.1	23

#	Article	IF	CITATIONS
235	Cytokines in Clinical Psychiatry. American Journal of Psychiatry, 2001, 158, 1163-1163.	7.2	23
236	Sickness behavior induced by cisplatin chemotherapy and radiotherapy in a murine head and neck cancer model is associated with altered mitochondrial gene expression. Behavioural Brain Research, 2016, 297, 241-250.	2.2	22
237	Expression of the 75 kDA TNF receptor and its role in contact-mediated neuronal cell death. Molecular Brain Research, 1998, 62, 111-121.	2.3	21
238	Cholecystokinin receptors do not mediate the suppression of food-motivated behavior by lipopolysaccharide and interleukin-1 beta in mice. Physiology and Behavior, 2000, 69, 325-331.	2.1	21
239	IL-1β Suppresses Prolonged Akt Activation and Expression of E2F-1 and Cyclin A in Breast Cancer Cells. Journal of Immunology, 2004, 172, 7272-7281.	0.8	21
240	Pentoxifylline and insulin-like growth factor-I (IGF-I) abrogate kainic acid-induced cognitive impairment in mice. Journal of Neuroimmunology, 2005, 169, 50-58.	2.3	21
241	Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior. Psychopharmacology, 2019, 236, 2975-2982.	3.1	21
242	Les inter-relations entre le système nerveux et le système immunitaire. Société De Biologie Journal, 2003, 197, 81-88.	0.3	20
243	Functional TSPO polymorphism predicts variance in the diurnal cortisol rhythm in bipolar disorder. Psychoneuroendocrinology, 2018, 89, 194-202.	2.7	20
244	Regulation of Myeloid Growth and Differentiation by the Insulin-Like Growth Factor I Receptor. Endocrinology, 1997, 138, 362-368.	2.8	20
245	Effects of lithium on aggressive behaviour in domestic pigs. Journal of Veterinary Pharmacology and Therapeutics, 1979, 2, 299-303.	1.3	19
246	Relationship of the effects of the benzodiazepine derivative clorazepate on corticosterone secretion with its behavioural actions. Antagonism by ro 15–1788. Pharmacology Biochemistry and Behavior, 1984, 21, 839-843.	2.9	19
247	Effects of serotonin synthesis blockade on interleukin-1β action in the brain of rats. Brain Research, 2001, 915, 244-247.	2.2	19
248	Elevated Levels of Plasma Phenylalanine in Schizophrenia: A Guanosine Triphosphate Cyclohydrolase-1 Metabolic Pathway Abnormality?. PLoS ONE, 2014, 9, e85945.	2.5	19
249	Inflammation, negative affect, and amyloid burden in Alzheimer's disease: Insights from the kynurenine pathway. Brain, Behavior, and Immunity, 2021, 95, 216-225.	4.1	19
250	Disruption of microglia histone acetylation and protein pathways in mice exhibiting inflammation-associated depression-like symptoms. Psychoneuroendocrinology, 2018, 97, 47-58.	2.7	18
251	Chronic intracerebral infusions of vasopressin and vasopressin antagonist modulate behavioral effects of interleukin-1 in rat. Brain Research Bulletin, 1992, 29, 897-900.	3.0	17
252	Insulin-like growth factor-I and the cytokines IL-3 and IL-4 promote survival of progenitor myeloid cells by different mechanisms. Journal of Neuroimmunology, 2003, 135, 82-90.	2.3	17

#	Article	IF	CITATIONS
253	Primary murine microglia are resistant to nitric oxide inhibition of indoleamine 2,3-dioxygenase. Brain, Behavior, and Immunity, 2010, 24, 1249-1253.	4.1	17
254	Hypertonic saline mimics the effects of vasopressin on inhibitory avoidance in the rat. Behavioral and Neural Biology, 1987, 47, 130-137.	2.2	16
255	Brain type I but not type II IL-1 receptors mediate the effects of IL-1Î ² on behavior in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R735-R740.	1.8	16
256	Increased Sensitivity of Prediabetic Nonobese Diabetic Mouse to the Behavioral Effects of IL-1. Brain, Behavior, and Immunity, 1999, 13, 303-314.	4.1	16
257	Role of interleukinâ€1β and tumour necrosis factorâ€Î± in lipopolysaccharideâ€induced sickness behaviour: a study with interleukinâ€1 type I receptorâ€deficient mice. European Journal of Neuroscience, 2000, 12, 4447-4456.	2.6	16
258	Influence of the course of brain inflammation on the endogenous IL-1β/IL-1Ra balance in the model of brain delayed-type hypersensitivity response to bacillus Calmette–Guérin in Lewis rats. Journal of Neuroimmunology, 2004, 149, 22-30.	2.3	16
259	Neuroendocrine-Immune Interactions. Advances in Veterinary Medicine, 1990, 35, 283-305.	0.1	16
260	New aspects of the use of tranquillizers in animal husbandry, with particular reference to pigs. Veterinary Research Communications, 1977, 1, 161-169.	1.6	15
261	Interleukin-1 reduces food intake and body weight in rat by acting in the arcuate hypothalamus. Brain, Behavior, and Immunity, 2019, 81, 560-573.	4.1	15
262	Stress in Domestic Animals: A Psychoneuroendocrine Approach. , 1985, , 81-95.		15
263	Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages. PLoS ONE, 2016, 11, e0157727.	2.5	15
264	Dissociation between suppressive and facilitating effects of aversive stimuli on behavior by benzodiazepines. A review and reinterpretation. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 1978, 2, 33-40.	0.6	14
265	Conditioned place aversion with interleukin-1β in mice is not associated with activation of the cytokine network. Brain, Behavior, and Immunity, 2003, 17, 110-120.	4.1	14
266	Tumor Necrosis Factor α Inhibits Insulin-Like Growth Factor I-Induced Hematopoietic Cell Survival and Proliferation. Endocrinology, 2004, 145, 3101-3105.	2.8	14
267	Behavioural effects of cytokines. , 1992, , 135-150.		14
268	Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Frontiers in Neuroscience, 2021, 15, 725547.	2.8	14
269	Association between circulating levels of C-reactive protein and positive and negative symptoms of psychosis in adolescents in a general population birth cohort. Journal of Psychiatric Research, 2021, 143, 534-542.	3.1	12
270	Frustration, Aggression and Drugs. Topics in the Neurosciences, 1987, , 1-13.	0.2	12

#	Article	IF	CITATIONS
271	Hypersensitivity of lurcher mutant mice to the depressing effects of lipopolysaccharide and interleukin-1 on behaviour. NeuroReport, 1997, 8, 1119-1122.	1.2	11
272	Cytokines, Sickness Behavior, and Depression. , 2007, , 281-318.		11
273	Autistic childrens: A neuroimmune perspective. Brain, Behavior, and Immunity, 2008, 22, 804-805.	4.1	11
274	An effort expenditure perspective on cancer-related fatigue. Psychoneuroendocrinology, 2018, 96, 109-117.	2.7	11
275	Love and fear in the times of sickness. Comprehensive Psychoneuroendocrinology, 2021, 6, 100032.	1.7	11
276	Advancing the understanding of behaviors associated with Bacille Calmette Guérin infection using multivariate analysis. Brain, Behavior, and Immunity, 2015, 44, 176-186.	4.1	10
277	Pharmacokinetics of lithium in pigs. Journal of Veterinary Pharmacology and Therapeutics, 1978, 1, 309-312.	1.3	9
278	Conditioned taste aversion as an index of lead toxicity. Pharmacology Biochemistry and Behavior, 1980, 13, 133-135.	2.9	9
279	Neuroimmune mechanisms of cognitive impairment in a mouse model of Gulf War illness. Brain, Behavior, and Immunity, 2021, 97, 204-218.	4.1	9
280	Antipunishment effects of diazepam: Interaction with shock and food deprivation levels in pigs. Psychopharmacology, 1978, 58, 99-104.	3.1	8
281	Analysis of the dual mechanism of ACTH release by arginine vasopressin and its analogs in conscious rats. Regulatory Peptides, 1985, 12, 175-184.	1.9	8
282	Competitive Reverse Transcriptase-Polymerase Chain Reaction Using a Synthetic Internal RNA Standard to Quantitate Transcripts for Leukocyte-Derived Hormones. NeuroImmunoModulation, 1994, 1, 33-41.	1.8	8
283	Stress, emotions and health: where do we stand?. Social Science Information, 2001, 40, 61-78.	1.6	8
284	Analytical workflow profiling gene expression in murine macrophages. Journal of Bioinformatics and Computational Biology, 2015, 13, 1550010.	0.8	8
285	Covid-19: An Urgent Need For A Psychoneuroendocrine Perspective. Psychoneuroendocrinology, 2020, 116, 104703.	2.7	8
286	Cellular distribution of interleukin-1α-immunoreactivity after MPTP intoxication in mice. Molecular Brain Research, 2005, 138, 156-163.	2.3	7
287	Toll-like receptor 4 mediates the development of fatigue in the murine Lewis Lung Carcinoma model independently of activation of macrophages and microglia. Psychoneuroendocrinology, 2020, 122, 104874.	2.7	7
288	A role of IL-1 in MPTP-induced changes in striatal dopaminergic and serotoninergic transporter binding: clues from interleukin-1 type I receptor-deficient mice. Molecular Brain Research, 2005, 136, 267-270.	2.3	6

#	Article	IF	CITATIONS
289	Inhibition of Tryptophan Catabolism Is Associated With Neuroprotection During Zika Virus Infection. Frontiers in Immunology, 2021, 12, 702048.	4.8	6
290	Sex differences in the behavioral and immune responses of mice to tumor growth and cancer therapy. Brain, Behavior, and Immunity, 2021, 98, 161-172.	4.1	6
291	Brain Perivascular Macrophages Do Not Mediate Interleukin-1-Induced Sickness Behavior in Rats. Pharmaceuticals, 2021, 14, 1030.	3.8	6
292	Animal suffering: The practical way forward. Behavioral and Brain Sciences, 1990, 13, 17-18.	0.7	5
293	Immune Alterations Induced by Social Defeat Do Not Alter the Course of an On-Going BCG Infection in Mice. NeuroImmunoModulation, 2004, 11, 414-418.	1.8	5
294	Kynurenine pathway metabolites selectively associate with impaired associative memory function in depression. Brain, Behavior, & Immunity - Health, 2020, 8, 100126.	2.5	5
295	Behavioral Analysis of Anxiolytic Drug Action. , 1987, , 263-297.		5
296	Effects of placebo administration on immune mechanisms and relationships with central endogenous opioid neurotransmission. Molecular Psychiatry, 2022, 27, 831-839.	7.9	5
297	Inflammation, sickness behaviour and depression. , 0, , 265-279.		4
298	Expression and Action of Cytokines in the Brain: Mechanisms and Pathophysiological Implications. , 2007, , 271-280.		4
299	Central nervous system control of sickness behavior. , 1994, , 152-182.		3
300	Can cancerâ€related cognitive impairment be considered in isolation from other cancerâ€related symptoms?. Psycho-Oncology, 2018, 27, 2511-2512.	2.3	3
301	From Stress Sensitization to Microglial Priming and Vice Versa: A New Era of Research in Biological Psychiatry. Biological Psychiatry, 2019, 85, 619-620.	1.3	3
302	Inflammation and Depression: Is Immunometabolism the Missing Link?. , 2021, , 259-287.		3
303	Neutralizing interleukin-6 in tumor-bearing mice does not abrogate behavioral fatigue induced by Lewis lung carcinoma. Behavioural Brain Research, 2022, 417, 113607.	2.2	3
304	Cytokines and Sickness Behavior. Neurobiological Foundation of Aberrant Behaviors, 2003, , 129-146.	0.2	3
305	Evolutionary Aspects of Infections: Inflammation and Sickness Behaviors. Current Topics in Behavioral Neurosciences, 2022, , 1-14.	1.7	3
306	The Importance of Conditioning in Conditioned Immunosuppression. International Journal of Neuroscience, 1988, 39, 289-297.	1.6	2

#	Article	IF	CITATIONS
307	EuroConference on cytokines in the brain: Expression and action of cytokines in the brain and pathophysiological implicationsâ ⁻ †. Brain, Behavior, and Immunity, 2005, 19, 263-267.	4.1	2
308	The cortisol awakening response at its best. Psychoneuroendocrinology, 2016, 63, 412-413.	2.7	2
309	Can Immunopsychiatry Help in Understanding the Basis of Sex Differences in Major Depressive Disorder?. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 606-607.	1.5	2
310	Inhibition of Indoleamine 2,3 Dioxygenase Does Not Improve Cancer-Related Symptoms in a Murine Model of Human Papilloma Virus–Related Head and Neck Cancer. International Journal of Tryptophan Research, 2019, 12, 117864691987250.	2.3	2
311	ls it important to know about emotions in order to study emotions?. Behavioural Processes, 2002, 60, v-vii.	1.1	1
312	Crosstalk between Insulin-like Growth Factors and Pro-inflammatory Cytokines. , 2007, , 171-191.		1
313	Psychoneuroimmune Phenomena: Neuroimmune Interactions. , 2013, , 527-554.		1
314	Activation of lung toll-like receptors does not exacerbate sickness responses to lipopolysaccharide in mice. Brain, Behavior, and Immunity, 2014, 38, 211-219.	4.1	1
315	Psychoneuroimmune Phenomena: Neuroimmune Interactions. , 2016, , 643-670.		1
316	Covid-19: An urgent need for a psychoneuroendocrine perspective. Comprehensive Psychoneuroendocrinology, 2020, 1-2, 100003.	1.7	1
317	Lipopolysaccharide does not alter behavioral response to successive negative contrast in mice. Psychopharmacology, 2021, 238, 691-697.	3.1	1
318	Inflammation, Sickness Behaviour and Depression. , 2021, , 109-138.		1
319	Mood Disorders and Immunity. , 2013, , 167-209.		1
320	Mechanisms of action of cytokines on the central nervous system. Interaction with glucocorticoids. , 1997, , 1-13.		1
321	Love and fear: A special issue. Comprehensive Psychoneuroendocrinology, 2022, , 100151.	1.7	1
322	Neuroimmunology of Eating Disorders. , 0, , 1149-1157.		0
323	Un sustrato biol $ ilde{A}^3$ gico para los trastornos somatomorfos. , 2010, , 61-70.		Ο
324	Neuroimmunological cross-talk in critical illness. , 0, , 160-171.		0

19

#	Article	IF	CITATIONS
325	Psychiatric Disorders and Inflammation. , 2017, , 767-784.		0
326	Basic Concepts in Immunobiology. , 2021, , 1-24.		0
327	Microbiome-Gut-Brain Interactions in Neurodevelopmental Disorders: Focus on Autism and Schizophrenia. , 2021, , 258-291.		0
328	Immunotherapies for Depression. , 2021, , 139-163.		0
329	The Role of Adaptive and Innate Immunity in Alzheimer's Disease. , 2021, , 213-232.		0
330	Effectiveness of Immunotherapies for Psychotic Disorders. , 2021, , 96-108.		0
331	From Psychoneuroimmunology to Immunopsychiatry: An Historical Perspective. , 2021, , 25-50.		0
332	Transdiagnostic Features of the Immune System in Major Depressive Disorder, Bipolar Disorder and Schizophrenia. , 2021, , 309-335.		0
333	The Effect of Systemic Inflammation on Cognitive Function and Neurodegenerative Disease. , 2021, , 164-189.		0
334	Depression and the Adaptive Immune System. , 2021, , 292-308.		0
335	Mechanisms of Cytokine-Induced Sickness Behavior. , 2004, , 707-719.		0
336	INTRODUCTION TO IMMUNE SYSTEM EFFECTS ON NEURAL AND ENDOCRINE PROCESSES AND BEHAVIOR. , 2007, , 267-270.		0
337	8. Que faire du comportement dans les sciences du comportementÂ?. , 2010, , 197-208.		0
338	Hypoglycemia causes depressiveâ€like behaviors in mice. FASEB Journal, 2010, 24, lb380.	0.5	0
339	Cytokineâ€Induced Hormone Resistance. , 2011, , 254-258.		0
340	8. Que faire du comportement dans les sciences du comportementÂ?. , 2010, , 197-208.		0
341	From inflammation to sickness and depression: the cytokine connection. , 0, , 95-109.		0