
## Lisa A Delouise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107255/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Encapsulation of Primary Salivary Gland Acinar Cell Clusters and Intercalated Ducts (AIDUCs) within<br>Matrix Metalloproteinase (MMP)â€Degradable Hydrogels to Maintain Tissue Structure and Function.<br>Advanced Healthcare Materials, 2022, 11, e2101948. | 7.6 | 7         |
| 2  | Optimizing Soluble Cues for Salivary Cland Tissue Mimetics Using a Design of Experiments (DoE)<br>Approach. Cells, 2022, 11, 1962.                                                                                                                           | 4.1 | 2         |
| 3  | Development of a functional salivary gland tissue chip with potential for high-content drug screening. Communications Biology, 2021, 4, 361.                                                                                                                 | 4.4 | 30        |
| 4  | Salivary Gland Tissue Engineering Approaches: State of the Art and Future Directions. Cells, 2021, 10, 1723.                                                                                                                                                 | 4.1 | 13        |
| 5  | The UVR Filter Octinoxate Modulates Aryl Hydrocarbon Receptor Signaling in Keratinocytes via<br>Inhibition of CYP1A1 and CYP1B1. Toxicological Sciences, 2020, 177, 188-201.                                                                                 | 3.1 | 0         |
| 6  | Silicon Nanomembrane Filtration and Imaging for the Evaluation of Microplastic Entrainment along a<br>Municipal Water Delivery Route. Sustainability, 2020, 12, 10655.                                                                                       | 3.2 | 1         |
| 7  | Morphology-Dependent Titanium Dioxide Nanoparticle-Induced Keratinocyte Toxicity And Exacerbation Of Allergic Contact Dermatitis. Toxicology Current Research, 2020, 4, 1-7.                                                                                 | 0.2 | 3         |
| 8  | Further studies in translatable model systems are needed to predict the impacts of human microplastic exposure. Open Access Journal of Toxicology, 2020, 4, 79-82.                                                                                           | 0.3 | 0         |
| 9  | Microsystems technology for high-throughput single-cell sorting. , 2019, , 701-719.                                                                                                                                                                          |     | 0         |
| 10 | Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact<br>dermatitis. Scientific Reports, 2019, 9, 5085.                                                                                                           | 3.3 | 16        |
| 11 | Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation.<br>Particle and Fibre Toxicology, 2019, 16, 3.                                                                                                             | 6.2 | 37        |
| 12 | From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity. Advances in Experimental Medicine and Biology, 2017, 947, 71-100.                                                                                                             | 1.6 | 41        |
| 13 | Identifying drug resistant cancer cells using microbubble well arrays. Biomedical Microdevices, 2017,<br>19, 17.                                                                                                                                             | 2.8 | 3         |
| 14 | Effect of Nanoparticle Surface Coating on Cell Toxicity and Mitochondria Uptake. Journal of<br>Biomedical Nanotechnology, 2017, 13, 155-166.                                                                                                                 | 1.1 | 35        |
| 15 | Immunomodulatory Effects of Nanoparticles on Skin Allergy. Scientific Reports, 2017, 7, 3979.                                                                                                                                                                | 3.3 | 30        |
| 16 | In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Particle and Fibre Toxicology, 2017, 14, 12.                                                                        | 6.2 | 12        |
| 17 | Impact of Cosmetic Lotions on Nanoparticle Penetration through ex Vivo C57BL/6 Hairless Mouse and<br>Human Skin: A Comparison Study. Cosmetics, 2016, 3, 6.                                                                                                  | 3.3 | 34        |
| 18 | Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue<br>Targeting. Molecules, 2016, 21, 1719.                                                                                                                         | 3.8 | 178       |

LISA A DELOUISE

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | In vitro assays for determining the metastatic potential of melanoma cell lines with characterized in vivo invasiveness. Biomedical Microdevices, 2016, 18, 89.                                                 | 2.8  | 9         |
| 20 | UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.<br>Journal of Biomedical Nanotechnology, 2015, 11, 1644-1652.                                                      | 1.1  | 8         |
| 21 | Development and characterization of antibody reagents for detecting nanoparticles. Nanoscale, 2015, 7, 20042-20054.                                                                                             | 5.6  | 3         |
| 22 | Quantitative analysis of spherical microbubble cavity array formation in thermally cured polydimethylsiloxane for use in cell sorting applications. Biomedical Microdevices, 2014, 16, 55-67.                   | 2.8  | 12        |
| 23 | Understanding engineered nanomaterial skin interactions and the modulatory effects of ultraviolet radiation skin exposure. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 61-79. | 6.1  | 35        |
| 24 | Microbubble array diffusion assay for the detection of cell secreted factors. Lab on A Chip, 2014, 14, 3640-3650.                                                                                               | 6.0  | 9         |
| 25 | The impact of UVB exposure and differentiation state of primary keratinocytes on their interaction with quantum dots. Nanotoxicology, 2013, 7, 1244-1254.                                                       | 3.0  | 7         |
| 26 | Characterization of cell seeding and specific capture of B cells in microbubble well arrays.<br>Biomedical Microdevices, 2013, 15, 453-463.                                                                     | 2.8  | 10        |
| 27 | Thiol Antioxidant-Functionalized CdSe/ZnS Quantum Dots: Synthesis, Characterization, Cytotoxicity.<br>Journal of Biomedical Nanotechnology, 2013, 9, 382-392.                                                   | 1.1  | 28        |
| 28 | Quantification of quantum dot murine skin penetration with UVR barrier impairment.<br>Nanotoxicology, 2013, 7, 1386-1398.                                                                                       | 3.0  | 27        |
| 29 | Applications of Nanotechnology in Dermatology. Journal of Investigative Dermatology, 2012, 132, 964-975.                                                                                                        | 0.7  | 155       |
| 30 | Effect of homotypic and heterotypic interaction in 3D on the E-selectin mediated adhesive properties of breast cancer cell lines. Biomaterials, 2012, 33, 9037-9048.                                            | 11.4 | 35        |
| 31 | Quantification of human skin barrier function and susceptibility to quantum dot skin penetration.<br>Nanotoxicology, 2011, 5, 675-686.                                                                          | 3.0  | 22        |
| 32 | Near-IR fluorescence and reflectance confocal microscopy for imaging of quantum dots in mammalian skin. Biomedical Optics Express, 2011, 2, 1610.                                                               | 2.9  | 14        |
| 33 | Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics, 2011, 5, 24110.                                                                                                          | 2.4  | 72        |
| 34 | The Cytotoxicity of OPA-Modified CdSe/ZnS Core/Shell Quantum Dots and Its Modulation by Silibinin in Human Skin Cells. Journal of Biomedical Nanotechnology, 2011, 7, 648-658.                                  | 1.1  | 9         |
| 35 | Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes<br>(HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials, 2011, 32, 7159-7168.             | 11.4 | 30        |
| 36 | Enriching and characterizing cancer stem cell sub-populations in the WM115 melanoma cell line.<br>Biomaterials, 2011, 32, 9316-9327.                                                                            | 11.4 | 30        |

LISA A DELOUISE

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Detection of the Cancer Marker CD146 Expression in Melanoma Cells with Semiconductor Quantum<br>Dot Label. Journal of Biomedical Nanotechnology, 2010, 6, 303-311.                                                     | 1.1  | 17        |
| 38 | Integration of a Chemicalâ€Responsive Hydrogel into a Porous Silicon Photonic Sensor for Visual<br>Colorimetric Readout. Advanced Functional Materials, 2010, 20, 573-578.                                             | 14.9 | 76        |
| 39 | Tunable Detection Sensitivity of Opiates in Urine via a Label-Free Porous Silicon Competitive Inhibition<br>Immunosensor. Analytical Chemistry, 2010, 82, 714-722.                                                     | 6.5  | 45        |
| 40 | Label-Free Porous Silicon Immunosensor for Broad Detection of Opiates in a Blind Clinical Study and<br>Results Comparison to Commercial Analytical Chemistry Techniques. Analytical Chemistry, 2010, 82,<br>9711-9718. | 6.5  | 49        |
| 41 | Hybrid nanoporous silicon optical biosensor architectures for biological sample analysis.<br>Proceedings of SPIE, 2010, , .                                                                                            | 0.8  | 2         |
| 42 | Progress and Challenges in Quantifying Skin Permeability to Nanoparticles Using a Quantum Dot<br>Model. Journal of Biomedical Nanotechnology, 2010, 6, 596-604.                                                        | 1.1  | 9         |
| 43 | Increased in vivo skin penetration of quantum dots with UVR and in vitro quantum dot cytotoxicity. , 2009, , .                                                                                                         |      | 7         |
| 44 | Reusable linking chemistry for Hisâ€6 tagged proteins in an affinityâ€based porous silicon biosensor.<br>Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1299-1305.                           | 1.8  | 2         |
| 45 | Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 434-450.                      | 6.1  | 66        |
| 46 | Photoinduced fluorescence enhancement and energy transfer effects of quantum dots porous silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1729-1735.                                  | 0.8  | 20        |
| 47 | Design of a hybrid amine functionalized polyacrylamide hydrogel-porous silicon optical sensor. , 2009, , .                                                                                                             |      | 4         |
| 48 | Breeching Epithelial Barriers – Physiochemical Factors Impacting Nanomaterial Translocation and Toxicity. Nanostructure Science and Technology, 2009, , 33-62.                                                         | 0.1  | 4         |
| 49 | Microfabrication of Bubbular Cavities in PDMS for Cell Sorting and Microcell Culture Applications.<br>Journal of Bionic Engineering, 2008, 5, 308-316.                                                                 | 5.0  | 22        |
| 50 | In Vivo Skin Penetration of Quantum Dot Nanoparticles in the Murine Model: The Effect of UVR. Nano<br>Letters, 2008, 8, 2779-2787.                                                                                     | 9.1  | 273       |
| 51 | Label-Free Optical Detection of Peptide Synthesis on a Porous Silicon Scaffold/Sensor. Langmuir, 2008, 24, 2908-2915.                                                                                                  | 3.5  | 18        |
| 52 | Optical Detection of Polyacrylamide Swelling Behavior in a Porous Silicon Sensor. Materials<br>Research Society Symposia Proceedings, 2008, 1133, 1.                                                                   | 0.1  | 1         |
| 53 | Enhancement of the evanescent field using polymer waveguides fabricated by deep UV exposure on mesoporous silicon. Optics Letters, 2007, 32, 2843.                                                                     | 3.3  | 12        |
| 54 | Microfabrication of cavities in polydimethylsiloxane using DRIE silicon molds. Lab on A Chip, 2007, 7,<br>1660.                                                                                                        | 6.0  | 51        |

LISA A DELOUISE

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Steric Crowding Effects on Target Detection in an Affinity Biosensor. Langmuir, 2007, 23, 5817-5823.                                                                                                 | 3.5  | 92        |
| 56 | Label-Free Quantitative Detection of Protein Using Macroporous Silicon Photonic Bandgap<br>Biosensors. Analytical Chemistry, 2007, 79, 1502-1506.                                                    | 6.5  | 97        |
| 57 | Whole blood optical biosensor. Biosensors and Bioelectronics, 2007, 23, 444-448.                                                                                                                     | 10.1 | 101       |
| 58 | Hydrogel-Supported Optical-Microcavity Sensors. Advanced Materials, 2005, 17, 2199-2203.                                                                                                             | 21.0 | 60        |
| 59 | Enzyme Immobilization in Porous Silicon:  Quantitative Analysis of the Kinetic Parameters for<br>Glutathione-S-transferases. Analytical Chemistry, 2005, 77, 1950-1956.                              | 6.5  | 97        |
| 60 | Cross-Correlation of Optical Microcavity Biosensor Response with Immobilized Enzyme Activity.<br>Insights into Biosensor Sensitivity. Analytical Chemistry, 2005, 77, 3222-3230.                     | 6.5  | 131       |
| 61 | Quantatitive Assessment of Enzyme Immobilization Capacity in Porous Silicon. Analytical Chemistry, 2004, 76, 6915-6920.                                                                              | 6.5  | 71        |
| 62 | Surface chemistry on semiconductors studied by molecular-beam reactive scattering. Surface Science Reports, 1994, 19, 285-380.                                                                       | 7.2  | 94        |
| 63 | Dynamical study of the Ar+ ion-enhanced Cl2/GaAs s(110) etch rate phenomenon. Vacuum, 1992, 43, 1083-1085.                                                                                           | 3.5  | 3         |
| 64 | Defect induced surface chemistry: A comparison of the adsorption and thermal decomposition of C2H4 on Rh{111} and Rh{331}. Surface Science, 1990, 230, 35-46.                                        | 1.9  | 24        |
| 65 | The influence of surface atomic steps on site-selective adsorption processes. Ethylidyne formation on rhodium{111} and rhodium{331}. Journal of the American Chemical Society, 1987, 109, 6873-6875. | 13.7 | 16        |
| 66 | Adsorption and desorption of no from Rh{111} and Rh{331} surfaces. Surface Science, 1985, 159, 199-213.                                                                                              | 1.9  | 105       |
| 67 | Velocity dependence of azimuthal anisotropies in ion scattering from rhodium {111}. Surface Science, 1985, 154, 22-34.                                                                               | 1.9  | 16        |
| 68 | CHaracterization of CO binding sites on Rh{111} and Rh{331} surfaces by XPS and LEED: Comparison to EELS results. Surface Science, 1984, 147, 252-262.                                               | 1.9  | 40        |
| 69 | Carbon monoxide adsorption and desorption on Rh{111} and Rh{331} surfaces. Surface Science, 1984, 138, 417-431.                                                                                      | 1.9  | 59        |