List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106938/publications.pdf Version: 2024-02-01

R R IÃ DOENSEN

#	Article	IF	CITATIONS
1	A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407, 623-626.	13.7	2,636
2	Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 1982, 296, 643-645.	13.7	1,597
3	Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422, 608-611.	13.7	1,081
4	The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)1. Limnology and Oceanography, 1977, 22, 814-832.	1.6	794
5	Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry, 1989, 8, 205.	1.7	702
6	Distributions of Microbial Activities in Deep Subseafloor Sediments. Science, 2004, 306, 2216-2221.	6.0	681
7	Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 2002, 297, 1013-1015.	6.0	673
8	Microelectrodes: Their Use in Microbial Ecology. Advances in Microbial Ecology, 1986, , 293-352.	0.1	668
9	From The Cover: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6478-6483.	3.3	664
10	Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2815-2820.	3.3	644
11	Diffusive boundary layers and the oxygen uptake of sediments and detritus1. Limnology and Oceanography, 1985, 30, 111-122.	1.6	638
12	Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark. Geochimica Et Cosmochimica Acta, 1994, 58, 5115-5129.	1.6	584
13	Microbial life under extreme energy limitation. Nature Reviews Microbiology, 2013, 11, 83-94.	13.6	582
14	Feast and famine — microbial life in the deep-sea bed. Nature Reviews Microbiology, 2007, 5, 770-781.	13.6	577
15	Predominant archaea in marine sediments degrade detrital proteins. Nature, 2013, 496, 215-218.	13.7	526
16	Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature, 2004, 428, 66-70.	13.7	512
17	Dense Populations of a Giant Sulfur Bacterium in Namibian Shelf Sediments. Science, 1999, 284, 493-495.	6.0	453
18	A Thiosulfate Shunt in the Sulfur Cycle of Marine Sediments. Science, 1990, 249, 152-154.	6.0	446

#	Article	IF	CITATIONS
19	Big Bacteria. Annual Review of Microbiology, 2001, 55, 105-137.	2.9	445
20	Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 2005, 436, 390-394.	13.7	414
21	Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 2005, 433, 861-864.	13.7	413
22	Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature, 1995, 374, 713-715.	13.7	410
23	A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17861-17866.	3.3	388
24	Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment. Applied and Environmental Microbiology, 1981, 42, 5-11.	1.4	387
25	The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 2019, 10, 849.	1.5	375
26	Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochimica Et Cosmochimica Acta, 1993, 57, 571-578.	1.6	353
27	Bacterial Sulfate Reduction Above 100ÂC in Deep-Sea Hydrothermal Vent Sediments. Science, 1992, 258, 1756-1757.	6.0	342
28	Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica Et Cosmochimica Acta, 2004, 68, 2095-2118.	1.6	341
29	Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 1991, 57, 847-856.	1.4	329
30	Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature, 2012, 484, 101-104.	13.7	320
31	Ecology of the bacteria of the sulphur cycle with special reference to anoxic—oxic interface environments. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 298, 543-561.	2.4	297
32	A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica Et Cosmochimica Acta, 2011, 75, 3581-3599.	1.6	288
33	Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiology Reviews, 2015, 39, 688-728.	3.9	288
34	Colorless Sulfur Bacteria, <i>Beggiatoa</i> spp. and <i>Thiovulum</i> spp., in O ₂ and H ₂ S Microgradients. Applied and Environmental Microbiology, 1983, 45, 1261-1270.	1.4	288
35	Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica Et Cosmochimica Acta, 2002, 66, 85-92.	1.6	285
36	Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Applied and Environmental Microbiology, 1993, 59, 3840-3849.	1.4	281

#	Article	IF	CITATIONS
37	The diffusive boundary layer of sediments: Oxygen microgradients over a microbial mat. Limnology and Oceanography, 1990, 35, 1343-1355.	1.6	276
38	A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2004, 2, 171-180.	1.0	263
39	Community Structure, Cellular rRNA Content, and Activity of Sulfate-Reducing Bacteria in Marine Arctic Sediments. Applied and Environmental Microbiology, 2000, 66, 3592-3602.	1.4	259
40	Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria. Applied and Environmental Microbiology, 1986, 51, 398-407.	1.4	256
41	Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature, 1996, 382, 619-622.	13.7	255
42	Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Marine Genomics, 2015, 24, 185-196.	0.4	255
43	Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms. Applied and Environmental Microbiology, 1992, 58, 1164-1174.	1.4	252
44	A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology, 2015, 6, 476.	1.5	247
45	Seasonal Oxygen Depletion in the Bottom Waters of a Danish Fjord and Its Effect on the Benthic Community. Oikos, 1980, 34, 68.	1.2	239
46	Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology, 2007, 9, 131-142.	1.8	233
47	A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microbial Ecology, 1979, 5, 105-115.	1.4	232
48	In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature, 2003, 424, 763-766.	13.7	225
49	Nitrogen, Carbon, and Sulfur Metabolism in Natural <i>Thioploca</i> Samples. Applied and Environmental Microbiology, 1999, 65, 3148-3157.	1.4	223
50	Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 2097-2120.	0.6	222
51	Characterization of Specific Membrane Fatty Acids as Chemotaxonomic Markers for Sulfate-Reducing Bacteria Involved in Anaerobic Oxidation of Methane. Geomicrobiology Journal, 2003, 20, 403-419.	1.0	222
52	Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov., International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1631-1643.	0.8	221
53	Sulfide oxidation in the anoxic Black Sea chemocline. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S1083-S1103.	1.6	214
54	Growth Pattern and Yield of a Chemoautotrophic <i>Beggiatoa</i> sp. in Oxygen-Sulfide Microgradients. Applied and Environmental Microbiology, 1986, 52, 225-233.	1.4	209

#	Article	IF	CITATIONS
55	Sulfate-Reducing Bacteria and Their Activities in Cyanobacterial Mats of Solar Lake (Sinai, Egypt). Applied and Environmental Microbiology, 1998, 64, 2943-2951.	1.4	204
56	Primary production of microalgae in sediments measured by oxygen microprofile, H ₁₄ CO ₃ ―fixation, and oxygen exchange methods1. Limnology and Oceanography, 1981, 26, 717-730.	1.6	197
57	Sulfateâ€reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environmental Microbiology, 2009, 11, 1278-1291.	1.8	195
58	Microbial community assembly and evolution in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2940-2945.	3.3	194
59	Global diffusive fluxes of methane in marine sediments. Nature Geoscience, 2018, 11, 421-425.	5.4	192
60	Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature, 1975, 257, 489-492.	13.7	190
61	Aerobic Microbial Respiration in 86-Million-Year-Old Deep-Sea Red Clay. Science, 2012, 336, 922-925.	6.0	190
62	A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed. Science, 2009, 325, 1541-1544.	6.0	189
63	Kinetics of Sulfate and Acetate Uptake by <i>Desulfobacter postgatei</i> . Applied and Environmental Microbiology, 1984, 47, 403-408.	1.4	189
64	Solar Lake (Sinai). 5. The sulfur cycle of the bcnthic cyanobacterial mats1. Limnology and Oceanography, 1977, 22, 657-666.	1.6	184
65	Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Organic Geochemistry, 2007, 38, 2070-2097.	0.9	184
66	Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic). Limnology and Oceanography, 2005, 50, 1771-1786.	1.6	181
67	Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central namibian coastal upwelling zone. Geochimica Et Cosmochimica Acta, 2003, 67, 4505-4518.	1.6	176
68	Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochimica Et Cosmochimica Acta, 2005, 69, 2767-2779.	1.6	173
69	Genome sequencing of a single cell of the widely distributed marine subsurface <i>Dehalococcoidia,</i> phylum <i>Chloroflexi</i> . ISME Journal, 2014, 8, 383-397.	4.4	172
70	Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME Journal, 2007, 1, 341-353.	4.4	170
71	Phylogeny and physiology of candidate phylum â€~Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME Journal, 2016, 10, 273-286.	4.4	166
72	Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environmental Microbiology, 1999, 1, 65-74.	1.8	163

1.6

123

#	Article	IF	CITATIONS
73	Seasonal dynamics of elemental sulfur in two coastal sediments. Estuarine, Coastal and Shelf Science, 1982, 15, 255-266.	0.9	160
74	Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14164-14169.	3.3	159
75	Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Applied Microbiology and Biotechnology, 2003, 63, 107-114.	1.7	156
76	Sulfate reduction and the formation of 35Sâ€labeled FeS, FeS2, and S0 in coastal marine sediments. Limnology and Oceanography, 1989, 34, 793-806.	1.6	151
77	Insights into the Genome of Large Sulfur Bacteria Revealed by Analysis of Single Filaments. PLoS Biology, 2007, 5, e230.	2.6	151
78	Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea. Geochimica Et Cosmochimica Acta, 2004, 68, 2081-2093.	1.6	149
79	Symbiotic photosynthesis in a planktonic foraminiferan, <i>Globigerinoides sacculifer</i> (Brady), studied with microelectrodes1. Limnology and Oceanography, 1985, 30, 1253-1267.	1.6	148
80	Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Marine Chemistry, 2001, 74, 29-51.	0.9	142
81	Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 2007, 59, 10-22.	1.3	141
82	Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME Journal, 2014, 8, 1153-1165.	4.4	139
83	Succession of cable bacteria and electric currents in marine sediment. ISME Journal, 2014, 8, 1314-1322.	4.4	134
84	Slow Microbial Life in the Seabed. Annual Review of Marine Science, 2016, 8, 311-332.	5.1	134
85	The sulfur cycle of freshwater sediments: Role of thiosulfate. Limnology and Oceanography, 1990, 35, 1329-1342.	1.6	133
86	Microbial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent area: Influence of temperature and substrates. Geochimica Et Cosmochimica Acta, 1994, 58, 3335-3343.	1.6	133
87	Seasonal dynamics of benthic O ₂ uptake in a semienclosed bay: Importance of diffusion and faunal activity. Limnology and Oceanography, 2003, 48, 1265-1276.	1.6	133
88	Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak,) Tj ETQq0 0 0 r	rgBT /Over	lock 10 Tf 50
89	Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proceedings of the United States of America, 2018, 115, 367-372.	3.3	126

90 Transition layer thickness at a fluid-porous interface. Physics of Fluids, 2005, 17, 057102.

6

#	Article	IF	CITATIONS
91	ECOLOGY: A Starving Majority Deep Beneath the Seafloor. Science, 2006, 314, 932-934.	6.0	122
92	Community Size and Metabolic Rates of Psychrophilic Sulfate-Reducing Bacteria in Arctic Marine Sediments. Applied and Environmental Microbiology, 1999, 65, 4230-4233.	1.4	121
93	Oxygen Responses and Mat Formation by <i>Beggiatoa</i> spp. Applied and Environmental Microbiology, 1985, 50, 373-382.	1.4	117
94	Optical properties of benthic photosynthetic communities: Fiberâ€optic studies of cyanobacterial mats. Limnology and Oceanography, 1988, 33, 99-113.	1.6	116
95	Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnology and Oceanography, 2010, 55, 1338-1352.	1.6	116
96	Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiology Ecology, 1998, 25, 189-200.	1.3	114
97	Spectral light measurements in microbenthic phototrophic communities with a fiberâ€optic microprobe coupled to a sensitive diode array detector. Limnology and Oceanography, 1992, 37, 1813-1823.	1.6	112
98	Temperature dependence and rates of sulfate reduction in cold sediments of svalbard, arctic ocean. Geomicrobiology Journal, 1998, 15, 85-100.	1.0	108
99	Deep subseafloor microbial cells on physiological standby. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18193-18194.	3.3	108
100	Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark. Geochimica Et Cosmochimica Acta, 1990, 54, 2731-2742.	1.6	107
101	Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?. Frontiers in Microbiology, 2015, 6, 492.	1.5	107
102	Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments. Geochimica Et Cosmochimica Acta, 2001, 65, 763-776.	1.6	106
103	Ecology of Thioploca spp.: Nitrate and Sulfur Storage in Relation to Chemical Microgradients and Influence of Thioploca spp. on the Sedimentary Nitrogen Cycle. Applied and Environmental Microbiology, 2001, 67, 5530-5537.	1.4	105
104	Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environmental Microbiology, 1999, 1, 457-467.	1.8	100
105	Microoxic-Anoxic Niche of <i>Beggiatoa</i> spp.: Microelectrode Survey of Marine and Freshwater Strains. Applied and Environmental Microbiology, 1986, 52, 161-168.	1.4	98
106	Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochimica Et Cosmochimica Acta, 2017, 207, 256-276.	1.6	95
107	Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1133-1139.	0.8	93
108	Anoxie transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments. Geochimica Et Cosmochimica Acta, 1992, 56, 2425-2435.	1.6	92

#	Article	IF	CITATIONS
109	Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environmental Microbiology, 2003, 5, 523-533.	1.8	91
110	Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME Journal, 2019, 13, 250-262.	4.4	90
111	Sulfide oxidation in marine sediments: Geochemistry meets microbiology. , 2004, , .		88
112	Diffusive boundary layers of the colonyâ€forming plankton alga Phaeocystis sp.— implications for nutrient uptake and cellular growth. Limnology and Oceanography, 1999, 44, 1959-1967.	1.6	86
113	Bacteria and Marine Biogeochemistry. , 2006, , 169-206.		86
114	Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. ISME Journal, 2016, 10, 796-809.	4.4	85
115	The impact of temperature change on the activity and community composition of sulfateâ€reducing bacteria in arctic versus temperate marine sediments. Environmental Microbiology, 2009, 11, 1692-1703.	1.8	82
116	Dispersal of thermophilic <i>Desulfotomaculum</i> endospores into Baltic Sea sediments over thousands of years. ISME Journal, 2013, 7, 72-84.	4.4	82
117	The role of smallâ€scale sediment topography for oxygen flux across the diffusive boundary layer. Limnology and Oceanography, 2002, 47, 837-847.	1.6	80
118	Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 827-841.	0.6	78
119	Single-Cell Genome and Group-Specific <i>dsrAB</i> Sequencing Implicate Marine Members of the Class <i>Dehalococcoidia</i> (Phylum <i>Chloroflexi</i>) in Sulfur Cycling. MBio, 2016, 7, .	1.8	78
120	Emissions of biogenic sulfur gases from a danish estuary. Atmospheric Environment, 1985, 19, 1737-1749.	1.1	77
121	Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	1.0	77
122	Effects of freeze–thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME Journal, 2010, 4, 585-594.	4.4	76
123	Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. Frontiers in Microbiology, 2015, 6, 846.	1.5	76
124	Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Applied and Environmental Microbiology, 2016, 82, 1433-1447.	1.4	76
125	Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive ³⁵ S tracer. Limnology and Oceanography: Methods, 2014, 12, 196-211.	1.0	75
126	Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California). Deep-sea Research Part A, Oceanographic Research Papers, 1990, 37, 695-710.	1.6	74

#	Article	IF	CITATIONS
127	Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochimica Et Cosmochimica Acta, 2006, 70, 2970-2989.	1.6	74
128	Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central chile. Geochimica Et Cosmochimica Acta, 2008, 72, 827-843.	1.6	73
129	Bioturbation as a key driver behind the dominance of Bacteria over Archaea in near-surface sediment. Scientific Reports, 2017, 7, 2400.	1.6	73
130	Endospore abundance and d:l-amino acid modeling of bacterial turnover in holocene marine sediment (Aarhus Bay). Geochimica Et Cosmochimica Acta, 2012, 99, 87-99.	1.6	72
131	Control of sulphate and methane distributions in marine sediments by organic matter reactivity. Geochimica Et Cosmochimica Acta, 2013, 104, 183-193.	1.6	72
132	Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. Geochimica Et Cosmochimica Acta, 1994, 58, 67-73.	1.6	70
133	Sulfate reduction below the sulfate–methane transition in Black Sea sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 493-504.	0.6	70
134	Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Frontiers in Microbiology, 2018, 9, 2038.	1.5	69
135	Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. ISME Journal, 2008, 2, 815-829.	4.4	68
136	Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment. Applied and Environmental Microbiology, 2016, 82, 6120-6131.	1.4	68
137	Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences, 2009, 6, 1505-1518.	1.3	66
138	Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis. Frontiers in Microbiology, 2018, 9, 309.	1.5	63
139	Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. Journal of Marine Research, 2008, 66, 127-155.	0.3	62
140	Physiology and behaviour of marine <i>Thioploca</i> . ISME Journal, 2009, 3, 647-657.	4.4	62
141	Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microbial Ecology, 1988, 16, 133-147.	1.4	61
142	Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environmental Microbiology, 2010, 12, 1089-1104.	1.8	61
143	Concurrent low- and high-affinity sulfate reduction kinetics in marine sediment. Geochimica Et Cosmochimica Acta, 2011, 75, 2997-3010.	1.6	61
144	Microbial turnover times in the deep seabed studied by amino acid racemization modelling. Scientific Reports, 2017, 7, 5680.	1.6	61

#	Article	IF	CITATIONS
145	Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME Journal, 2019, 13, 1857-1864.	4.4	61
146	Oxygen uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the baltic sea - North sea transition. Ophelia, 1989, 31, 29-49.	0.3	60
147	Effect of the diffusive boundary layer on benthic mineralization and O ₂ distribution: A theoretical model analysis. Limnology and Oceanography, 2007, 52, 547-557.	1.6	58
148	Complex Microbial Communities Drive Iron and Sulfur Cycling in Arctic Fjord Sediments. Applied and Environmental Microbiology, 2019, 85, .	1.4	58
149	Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus) Tj ETQq1 1 C).784314 r 1.6	gBT_/Overloci
150	Large sulfur isotope fractionation by bacterial sulfide oxidation. Science Advances, 2019, 5, eaaw1480.	4.7	57
151	Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments. Geochimica Et Cosmochimica Acta, 2019, 254, 231-245.	1.6	56
152	Shrinking majority of the deep biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15976-15977.	3.3	55
153	Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay. Frontiers in Microbiology, 2019, 10, 758.	1.5	54
154	The future of single-cell environmental microbiology. Environmental Microbiology, 2007, 9, 6-7.	1.8	53
155	Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochimica Et Cosmochimica Acta, 2008, 72, 3746-3757.	1.6	53
156	Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay. Applied and Environmental Microbiology, 2017, 83, .	1.4	53
157	Concurrent Methane Production and Oxidation in Surface Sediment from Aarhus Bay, Denmark. Frontiers in Microbiology, 2017, 8, 1198.	1.5	53
158	Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. Marine Genomics, 2018, 37, 58-68.	0.4	52
159	Uncultured <scp><i>D</i></scp> <i>esulfobacteraceae</i> and <scp>C</scp> renarchaeotal group <scp>C</scp> 3 incorporate ¹³ <scp>C</scp> â€acetate in coastal marine sediment. Environmental Microbiology Reports, 2015, 7, 614-622.	1.0	51
160	Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environmental Microbiology, 2018, 20, 2927-2940.	1.8	50
161	Sediment oxygen consumption: Role in the global marine carbon cycle. Earth-Science Reviews, 2022, 228, 103987.	4.0	50
162	Diffusive boundary layers, photosynthesis, and respiration of the colonyâ€ f orming plankton algae, Phaeocystis sp. Limnology and Oceanography, 1999, 44, 1949-1958.	1.6	49

#	Article	IF	CITATIONS
163	Photochemistry of iron in aquatic environments. Environmental Sciences: Processes and Impacts, 2020, 22, 12-24.	1.7	49
164	Preservation of microbial DNA in marine sediments: insights from extracellular DNA pools. Environmental Microbiology, 2018, 20, 4526-4542.	1.8	48
165	Quantification of dissimilatory (bi)sulphite reductase gene expression inDesulfobacterium autotrophicumusing real-time RT-PCR. Environmental Microbiology, 2003, 5, 660-671.	1.8	47
166	Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 681-685.	0.8	47
167	Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2390-2398.	0.6	47
168	Direct analysis of volatile fatty acids in marine sediment porewater by twoâ€dimensional ion chromatographyâ€mass spectrometry. Limnology and Oceanography: Methods, 2014, 12, 455-468.	1.0	46
169	Bacteriogenic Fe(III) (Oxyhydr)oxides Characterized by Synchrotron Microprobe Coupled with Spatially Resolved Phylogenetic Analysis. Environmental Science & Technology, 2012, 46, 3304-3311.	4.6	45
170	Accumulation of prokaryotic remains during organic matter diagenesis in surface sediments off Peru. Limnology and Oceanography, 2009, 54, 1139-1151.	1.6	44
171	The sulfur cycle below the sulfate-methane transition of marine sediments. Geochimica Et Cosmochimica Acta, 2018, 239, 74-89.	1.6	44
172	Sulfate reduction in Black Sea sediments: in situ and laboratory radiotracer measurements from the shelf to 2000m depth. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 2073-2096.	0.6	43
173	Viral activities and life cycles in deep subseafloor sediments. Environmental Microbiology Reports, 2015, 7, 868-873.	1.0	43
174	Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 687-690.	0.8	42
175	Hydrogen ?leakage? during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments. Environmental Microbiology, 2007, 9, 1060-1071.	1.8	42
176	The Impact of Sediment and Carbon Fluxes on the Biogeochemistry of Methane and Sulfur in Littoral Baltic Sea Sediments (HimmerfjÄ r den, Sweden). Estuaries and Coasts, 2013, 36, 98-115.	1.0	42
177	Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content. Environmental Microbiology, 2016, 18, 3159-3174.	1.8	42
178	Methylotrophic methanogenesis fuels cryptic methane cycling in marine surface sediment. Limnology and Oceanography, 2018, 63, 1519-1527.	1.6	42
179	Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME Journal, 2019, 13, 1920-1932.	4.4	40
180	Macrofaunal control of microbial community structure in continental margin sediments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15911-15922.	3.3	40

#	Article	IF	CITATIONS
181	Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environmental Microbiology Reports, 2017, 9, 528-536.	1.0	39
182	Organic Carbon Degradation in Arctic Marine Sediments, Svalbard: A Comparison of Initial and Terminal Steps. Geomicrobiology Journal, 2006, 23, 551-563.	1.0	38
183	Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences, 2012, 9, 3425-3435.	1.3	38
184	Sulfidization of lacustrine glacial clay upon Holocene marine transgression (Arkona Basin, Baltic) Tj ETQq0 0 0 rg	BT /Overlo 1.6	ck 10 Tf 50 6
185	Controls on volatile fatty acid concentrations in marine sediments (Baltic Sea). Geochimica Et Cosmochimica Acta, 2019, 258, 226-241.	1.6	38
186	Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and <i>In Situ</i> Geochemistry. Applied and Environmental Microbiology, 2019, 85, .	1.4	37
187	Sulfur isotope exchange between 35S-labeled inorganic sulfur compounds in anoxic marine sediments. Marine Chemistry, 1992, 38, 117-132.	0.9	36
188	Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses. Geochimica Et Cosmochimica Acta, 2008, 72, 2868-2879.	1.6	36
189	Comment on "Physical Model for the Decay and Preservation of Marine Organic Carbon". Science, 2008, 319, 1616-1616.	6.0	36
190	Desulfoconvexum algidum gen. nov., sp. nov., a psychrophilic sulfate-reducing bacterium isolated from a permanently cold marine sediment. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 959-964.	0.8	36
191	Case study — Aarhus Bay. Coastal and Estuarine Studies, 1996, , 137-154.	0.4	35
192	Cyclic 100-ka (glacial-interglacial) migration of subseafloor redox zonation on the Peruvian shelf. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18098-18103.	3.3	35
193	Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater: An evaluation by reaction-transport modelling. Journal of Marine Systems, 2019, 200, 103227.	0.9	35
194	Sulfate reduction in marine sediments from the Baltic Sea-North Sea Transition. Ophelia, 1989, 31, 1-15.	0.3	34
195	Transmission of oxygen concentration fluctuations through the diffusive boundary layer overlying aquatic sediments. Limnology and Oceanography, 2004, 49, 686-692.	1.6	34
196	A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples. Journal of Microbiological Methods, 2003, 55, 165-172.	0.7	33
197	Iron-controlled oxidative sulfur cycling recorded in the distribution and isotopic composition of sulfur species in glacially influenced fjord sediments of west Svalbard. Chemical Geology, 2017, 466, 678-695.	1.4	33
198	Early diagenesis of iron and sulfur in Bornholm Basin sediments: The role of near-surface pyrite formation. Geochimica Et Cosmochimica Acta, 2020, 284, 43-60.	1.6	33

#	Article	IF	CITATIONS
199	Conversion and conservation of light energy in a photosynthetic microbial mat ecosystem. ISME Journal, 2010, 4, 440-449.	4.4	32
200	Estimation of biogeochemical rates from concentration profiles: A novel inverse method. Estuarine, Coastal and Shelf Science, 2012, 100, 26-37.	0.9	32
201	Abiotic Racemization Kinetics of Amino Acids in Marine Sediments. PLoS ONE, 2013, 8, e71648.	1.1	32
202	Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor. Environmental Microbiology Reports, 2016, 8, 452-460.	1.0	32
203	Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79°N). FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	31
204	Space for hydrogen. Nature, 2001, 412, 286-289.	13.7	30
205	Contribution of Chloroflexus respiration to oxygen cycling in a hypersaline microbial mat from Lake Chiprana, Spain. Environmental Microbiology, 2007, 9, 2007-2024.	1.8	30
206	Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments. Frontiers in Microbiology, 2015, 6, 1414.	1.5	30
207	The influence of topography on the functional exchange surface of marine soft sediments, assessed from sediment topography measured in situ. Limnology and Oceanography, 2005, 50, 106-112.	1.6	29
208	Filamentous bacteria inhabiting the sheaths of marine Thioploca spp. on the Chilean continental shelf. FEMS Microbiology Ecology, 2009, 68, 164-172.	1.3	29
209	Identity, Abundance, and Reactivation Kinetics of Thermophilic Fermentative Endospores in Cold Marine Sediment and Seawater. Frontiers in Microbiology, 2017, 8, 131.	1.5	29
210	The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron. Earth and Planetary Science Letters, 2020, 536, 116165.	1.8	29
211	Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation. Geochimica Et Cosmochimica Acta, 2022, 316, 309-330.	1.6	28
212	Fe(III) Photoreduction Producing Fe _{aq} ²⁺ in Oxic Freshwater Sediment. Environmental Science & Technology, 2020, 54, 862-869.	4.6	27
213	Quantification of sulphide oxidation rates in marine sediment. Geochimica Et Cosmochimica Acta, 2020, 280, 441-452.	1.6	27
214	Potentially bioavailable iron produced through benthic cycling in glaciated Arctic fjords of Svalbard. Nature Communications, 2021, 12, 1349.	5.8	26
215	Seasonal variation in H2S emission to the atmosphere from intertidal sediments in denmark. Atmospheric Environment, 1982, 16, 855-865.	1.1	25
216	Off Limits: Sulfate below the Sulfate-Methane Transition. Frontiers in Earth Science, 2016, 4, .	0.8	25

#	Article	IF	CITATIONS
217	IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere. Scientific Drilling, 0, 20, 1-12.	1.0	25
218	Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea. Frontiers in Microbiology, 2016, 7, 1375.	1.5	24
219	The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent half-saturation constants for dissimilatory sulfate reduction. FEMS Microbiology Ecology, 2017, 93, .	1.3	24
220	Isotopically "heavy―pyrite in marine sediments due to high sedimentation rates and non-steady-state deposition. Geology, 2021, 49, 816-821.	2.0	23
221	Phosphate geochemistry, mineralization processes, and Thioploca distribution in shelf sediments off central Chile. Marine Geology, 2010, 277, 61-72.	0.9	22
222	Ammoniaâ€oxidizing B acteria of the N itrosospira cluster 1 dominate over ammoniaâ€oxidizing A rchaea in oligotrophic surface sediments near the S outh A tlantic G yre. Environmental Microbiology Reports, 2015, 7, 404-413.	1.0	22
223	Reactivity of Iron Minerals in the Seabed Toward Microbial Reduction – A Comparison of Different Extraction Techniques. Geomicrobiology Journal, 2020, 37, 170-189.	1.0	22
224	Subâ€seafloor biogeochemical processes and microbial life in the Baltic Sea. Environmental Microbiology, 2020, 22, 1688-1706.	1.8	22
225	Thermophilic Sulfate Reduction in Hydrothermal Sediment of Lake Tanganyika, East Africa. Applied and Environmental Microbiology, 1994, 60, 1473-1480.	1.4	22
226	Historical Factors Associated With Past Environments Influence the Biogeography of Thermophilic Endospores in Arctic Marine Sediments. Frontiers in Microbiology, 2019, 10, 245.	1.5	21
227	Rapid metabolism fosters microbial survival in the deep, hot subseafloor biosphere. Nature Communications, 2022, 13, 312.	5.8	21
228	Cellular content of biomolecules in sub-seafloor microbial communities. Geochimica Et Cosmochimica Acta, 2016, 188, 330-351.	1.6	20
229	Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochimica Et Cosmochimica Acta, 2020, 280, 423-440.	1.6	20
230	Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology, 1994, 13, 303-312.	1.3	19
231	Size and composition of subseafloor microbial community in the Benguela upwelling area examined from intact membrane lipid and DNA analysis. Organic Geochemistry, 2017, 111, 86-100.	0.9	19
232	Sulphur and carbon isotopes as tracers of past sub-seafloor microbial activity. Scientific Reports, 2019, 9, 604.	1.6	19
233	Glacial controls on redox-sensitive trace element cycling in Arctic fjord sediments (Spitsbergen,) Tj ETQq1 1 0.78	4314 rgB 1.6	T /Qyerlock 1
			_

Big sulfur bacteria. ISME Journal, 2010, 4, 1083-1084.

4.4 18

#	Article	IF	CITATIONS
235	Motility patterns of filamentous sulfur bacteria, Beggiatoa spp FEMS Microbiology Ecology, 2011, 77, 176-185.	1.3	18
236	Preâ€column liquid chromatographic determination of dipicolinic acid from bacterial endospores. Limnology and Oceanography: Methods, 2012, 10, 227-233.	1.0	18
237	Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea). Geochimica Et Cosmochimica Acta, 2018, 239, 255-274.	1.6	18
238	Freezing Tolerance of Thermophilic Bacterial Endospores in Marine Sediments. Frontiers in Microbiology, 2019, 10, 945.	1.5	18
239	A benthic lander for tracer studies in the sea bed: in situ measurements of sulfate reduction. Continental Shelf Research, 1998, 18, 1581-1594.	0.9	17
240	Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—Case study of Svalbard fjords. Limnology and Oceanography, 2021, 66, S273.	1.6	15
241	Unravelling the sulphur cycle of marine sediments. Environmental Microbiology, 2019, 21, 3533-3538.	1.8	12
242	Temperature regulation of gliding motility in filamentous sulfur bacteria, Beggiatoa spp FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	11
243	Estimating the Abundance of Endospores of Sulfate-Reducing Bacteria in Environmental Samples by Inducing Germination and Exponential Growth. Geomicrobiology Journal, 2017, 34, 338-345.	1.0	11
244	Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 2019, 10, 1729.	1.5	11
245	Benthic iron flux influenced by climateâ€sensitive interplay between organic carbon availability and sedimentation rate in Arctic fjords. Limnology and Oceanography, 2021, 66, 3374-3392.	1.6	11
246	Theory of equidistant three-dimensional radiance measurements with optical microprobes. Applied Optics, 1996, 35, 65.	2.1	10
247	Advective transport through permeable sediments: A new numerical and experimental approach. Acta Mechanica, 1999, 132, 221-227.	1.1	10
248	Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Communications Biology, 2021, 4, 1006.	2.0	10
249	Microbial biomass turnover times and clues to cellular protein repair in energy-limited deep Baltic Sea sediments. FEMS Microbiology Ecology, 2019, 95, .	1.3	9
250	The effect of temperature on sulfur and oxygen isotope fractionation by sulfate reducing bacteria (<i>Desulfococcus multivorans</i>). FEMS Microbiology Letters, 2020, 367, .	0.7	9
251	MICROSENSOR STUDIES OF OXYGEN AND LIGHT DISTRIBUTION IN THE GREEN MACROALGA CODIUM FRAGILE1. Journal of Phycology, 1994, 30, 381-386.	1.0	8
252	Psychrophilic properties of sulfateâ€reducing bacteria in Arctic marine sediments. Limnology and Oceanography, 2021, 66, S293.	1.6	8

#	Article	IF	CITATIONS
253	Sulfide assimilation by ectosymbionts of the sessile ciliate, Zoothamnium niveum. Marine Biology, 2009, 156, 669-677.	0.7	7
254	Complete genome sequence of Desulfobacter hydrogenophilus AcRS1. Marine Genomics, 2020, 50, 100691.	0.4	7
255	Response to substrate limitation by a marine sulfate-reducing bacterium. ISME Journal, 2022, 16, 200-210.	4.4	7
256	Early diagenesis of sulfur in Bornholm Basin sediments: The role of upward diffusion of isotopically "heavy―sulfide. Geochimica Et Cosmochimica Acta, 2021, 313, 359-377.	1.6	7
257	Die Mikrowelt der Meeresbakterien. Die Naturwissenschaften, 1995, 82, 269-278.	0.6	5
258	General theory of three-dimensional radiance measurements with optical microprobes. Applied Optics, 1997, 36, 6520.	2.1	5
259	Crystal ball – 2009. Environmental Microbiology Reports, 2009, 1, 3-26.	1.0	5
260	Contributions from the 9th International Conference on Gas in Marine Sediments, University of Bremen, 15–19 September 2008. Geo-Marine Letters, 2010, 30, 151-155.	0.5	5
261	Tight benthic-pelagic coupling drives seasonal and interannual changes in ironâ€'sulfur cycling in Arctic fjord sediments (Kongsfjorden, Svalbard). Journal of Marine Systems, 2021, , 103645.	0.9	5
262	Influence of Fe(III) source, light quality, photon flux and presence of oxygen on photoreduction of Fe(III)-organic complexes – Implications for light-influenced coastal freshwater and marine sediments. Science of the Total Environment, 2022, 814, 152767.	3.9	5
263	OXYGEN TRANSPORT ACROSS THE BENTHIC BOUNDARY LAYER: FROM A 1â€D TO A 3â€D VIEW. ASLO Bulletin, 2001, 10, 21-25.	0.1	4
264	Microbial life in deep subseafloor coal beds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11568-11570.	3.3	4
265	Do methanogenic archaea cause reductive pyrite dissolution in subsurface sediments?. ISME Journal, 2022, 16, 1-2.	4.4	3
266	A fibre-optic scalar irradiance microsensor: application for spectral light measurements in sediments. , 0, .		3
267	Advancing knowledge of anoxic systems of the World Ocean. Eos, 2004, 85, 47-51.	0.1	2
268	Effect of the aerenchymatous helophyte Glyceria maxima on the sulfate-reducing communities in two contrasting riparian grassland soils. Plant and Soil, 2013, 370, 73-87.	1.8	2
269	Growth of microaerophilic Fe(II)â€oxidizing bacteria using Fe(II) produced by Fe(III) photoreduction. Geobiology, 2022, 20, 421-434.	1.1	2
270	Life in the Deep Sub-Seafloor Biosphere. Energy Exploration and Exploitation, 2003, 21, 319-322.	1.1	0