List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A laser–plasma accelerator producing monoenergetic electron beams. Nature, 2004, 431, 541-544.	27.8	1,853
2	Laser wake field acceleration: the highly non-linear broken-wave regime. Applied Physics B: Lasers and Optics, 2002, 74, 355-361.	2.2	1,028
3	CalcHEP 3.4Âfor collider physics within and beyond the Standard Model. Computer Physics Communications, 2013, 184, 1729-1769.	7.5	738
4	micrOMEGAs_3: A program for calculating dark matter observables. Computer Physics Communications, 2014, 185, 960-985.	7.5	582
5	micrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model. Computer Physics Communications, 2007, 176, 367-382.	7.5	574
6	Particle acceleration in relativistic laser channels. Physics of Plasmas, 1999, 6, 2847-2854.	1.9	566
7	Dark matter direct detection rate in a generic model with micrOMEGAs_2.2. Computer Physics Communications, 2009, 180, 747-767.	7.5	561
8	Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction. Physical Review Letters, 2004, 93, 135005.	7.8	557
9	Relativistic Magnetic Self-Channeling of Light in Near-Critical Plasma: Three-Dimensional Particle-in-Cell Simulation. Physical Review Letters, 1996, 76, 3975-3978.	7.8	527
10	Shortâ€pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Physics of Plasmas, 1996, 3, 3425-3437.	1.9	519
11	micrOMEGAs: A program for calculating the relic density in the MSSM. Computer Physics Communications, 2002, 149, 103-120.	7.5	493
12	SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators, Decay Packages, and Event Generators. Journal of High Energy Physics, 2004, 2004, 036-036.	4.7	413
13	Multi-MeV Electron Beam Generation by Direct Laser Acceleration in High-Density Plasma Channels. Physical Review Letters, 1999, 83, 4772-4775.	7.8	373
14	micrOMEGAs4.1: Two dark matter candidates. Computer Physics Communications, 2015, 192, 322-329.	7.5	342
15	micrOMEGAs: Version 1.3. Computer Physics Communications, 2006, 174, 577-604.	7.5	332
16	Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). Journal of Plasma Physics, 1999, 61, 425-433.	2.1	331
17	micrOMEGAs5.0 : Freeze-in. Computer Physics Communications, 2018, 231, 173-186.	7.5	327
18	Strong field interaction of laser radiation. Reports on Progress in Physics. 2003. 66. 47-101.	20.1	306

#	Article	IF	CITATIONS
19	Physics interplay of the LHC and the ILC. Physics Reports, 2006, 426, 47-358.	25.6	297
20	SUSY Les Houches Accord 2. Computer Physics Communications, 2009, 180, 8-25.	7.5	295
21	Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Physical Review E, 2006, 74, 046404.	2.1	287
22	Relativistic laserÂplasma interactions. Journal Physics D: Applied Physics, 2003, 36, R151-R165.	2.8	284
23	Indirect search for dark matter with micrOMEGAs_2.4. Computer Physics Communications, 2011, 182, 842-856.	7.5	280
24	Physics with e+eâ^' linear colliders. Physics Reports, 1998, 299, 1-78.	25.6	274
25	Three-Dimensional Simulations of Ion Acceleration from a Foil Irradiated by a Short-Pulse Laser. Physical Review Letters, 2001, 86, 3562-3565.	7.8	273
26	Transverse-Wake Wave Breaking. Physical Review Letters, 1997, 78, 4205-4208.	7.8	260
27	Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Physics of Plasmas, 2005, 12, 043109.	1.9	255
28	Phenomenological theory of laser-plasma interaction in "bubble―regime. Physics of Plasmas, 2004, 11, 5256-5264.	1.9	250
29	Relativistic Doppler Effect: Universal Spectra and Zeptosecond Pulses. Physical Review Letters, 2004, 93, 115002.	7.8	212
30	Laser Hole Boring into Overdense Plasma and Relativistic Electron Currents for Fast Ignition of ICF Targets. Physical Review Letters, 1997, 79, 2686-2689.	7.8	206
31	Energetic ions generated by laser pulses: A detailed study on target properties. Physical Review Special Topics: Accelerators and Beams, 2002, 5, .	1.8	205
32	Superradiant Amplification of an Ultrashort Laser Pulse in a Plasma by a Counterpropagating Pump. Physical Review Letters, 1998, 81, 4879-4882.	7.8	204
33	Relativistic Channeling of a Picosecond Laser Pulse in a Near-Critical Preformed Plasma. Physical Review Letters, 1997, 78, 879-882.	7.8	187
34	Neutron production by 200 mJ ultrashort laser pulses. Physical Review E, 1998, 58, 1165-1168.	2.1	184
35	Proton-driven plasma-wakefield acceleration. Nature Physics, 2009, 5, 363-367.	16.7	184
36	Collective Stopping and Ion Heating in Relativistic-Electron-Beam Transport for Fast Ignition. Physical Review Letters, 2000, 85, 2128-2131.	7.8	179

#	Article	IF	CITATIONS
37	Enhanced Collimated GeV Monoenergetic Ion Acceleration from a Shaped Foil Target Irradiated by a Circularly Polarized Laser Pulse. Physical Review Letters, 2009, 103, 024801.	7.8	171
38	Relic density of dark matter in the next-to-minimal supersymmetric standard model. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 001-001.	5.4	167
39	Acceleration of electrons in the plasma wakefield of a proton bunch. Nature, 2018, 561, 363-367.	27.8	162
40	Self-Modulation Instability of a Long Proton Bunch in Plasmas. Physical Review Letters, 2010, 104, 255003.	7.8	157
41	Relativistic plasma nanophotonics for ultrahigh energy density physics. Nature Photonics, 2013, 7, 796-800.	31.4	156
42	Stable Laser-Driven Proton Beam Acceleration from a Two-Ion-Species Ultrathin Foil. Physical Review Letters, 2010, 105, 065002.	7.8	152
43	Two-dimensional particle-in-cell simulation for magnetized transport of ultra-high relativistic currents in plasma. Physics of Plasmas, 2000, 7, 1302-1308.	1.9	151
44	Relativistic laser-plasma interaction by multi-dimensional particle-in-cell simulations. Physics of Plasmas, 1998, 5, 1880-1886.	1.9	148
45	Radiation-Reaction Trapping of Electrons in Extreme Laser Fields. Physical Review Letters, 2014, 112, 145003.	7.8	147
46	Coherent Focusing of High Harmonics: A New Way Towards the Extreme Intensities. Physical Review Letters, 2005, 94, 103903.	7.8	146
47	Enhanced relativistic harmonics by electron nanobunching. Physics of Plasmas, 2010, 17, 033110.	1.9	141
48	X-ray generation in an ion channel. Physics of Plasmas, 2003, 10, 4818-4828.	1.9	133
49	Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nature Communications, 2016, 7, 13686.	12.8	131
50	Large Quasistatic Magnetic Fields Generated by a Relativistically Intense Laser Pulse Propagating in a Preionized Plasma. Physical Review Letters, 1998, 80, 5137-5140.	7.8	129
51	X-ray Generation in Strongly Nonlinear Plasma Waves. Physical Review Letters, 2004, 93, 135004.	7.8	129
52	Observation of Laser-Pulse Shortening in Nonlinear Plasma Waves. Physical Review Letters, 2005, 95, 205003.	7.8	123
53	Collider limits on new physics within micrOMEGAs <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml19" display="inline" overflow="scroll" altimg="si19.gif"><mml:mtext>_</mml:mtext>4.3. Computer Physics Communications, 2018, 222, 327-338.</mml:math 	7.5	118
54	Electron Vortices Produced by Ultraintense Laser Pulses. Physical Review Letters, 1996, 76, 3562-3565.	7.8	115

#	Article	IF	CITATIONS
55	Studies of ultra-intense laser plasma interactions for fast ignition. Physics of Plasmas, 2000, 7, 2014-2022.	1.9	115
56	Measurements of the Inverse Faraday Effect from Relativistic Laser Interactions with an Underdense Plasma. Physical Review Letters, 2001, 87, 215004.	7.8	113
57	High-Intensity Laser Induced Ion Acceleration from Heavy-Water Droplets. Physical Review Letters, 2003, 91, 015001.	7.8	112
58	Two-Dimensional Regimes of Self-Focusing, Wake Field Generation, and Induced Focusing of a Short Intense Laser Pulse in an Underdense Plasma. Physical Review Letters, 1995, 74, 710-713.	7.8	105
59	Harmonic Generation from Relativistic Plasma Surfaces in Ultrasteep Plasma Density Gradients. Physical Review Letters, 2012, 109, 125002.	7.8	99
60	Observations of Collimated Ionization Channels in Aluminum-Coated Glass Targets Irradiated by Ultraintense Laser Pulses. Physical Review Letters, 1999, 83, 4309-4312.	7.8	98
61	Self-Compression of Laser Pulses in Plasma. Physical Review Letters, 2003, 91, 265002.	7.8	98
62	Electron Self-Injection in Multidimensional Relativistic-Plasma Wake Fields. Physical Review Letters, 2009, 103, 175003.	7.8	97
63	WMAP constraints on SUGRA models with non-universal gaugino masses and prospects for direct detection. Nuclear Physics B, 2005, 706, 411-454.	2.5	96
64	Radiation reaction effects on ion acceleration in laser foil interaction. Plasma Physics and Controlled Fusion, 2011, 53, 014004.	2.1	93
65	Prospect of Studying Nonperturbative QED with Beam-Beam Collisions. Physical Review Letters, 2019, 122, 190404.	7.8	89
66	Impact of semi-annihilations on dark matter phenomenology. An example of <i>Z</i> _{<i>N</i>} symmetric scalar dark matter. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 010-010.	5.4	88
67	Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets. Physics of Plasmas, 2008, 15, .	1.9	86
68	The bubble regime of laser–plasma acceleration: monoenergetic electrons and the scalability. Plasma Physics and Controlled Fusion, 2004, 46, B179-B186.	2.1	85
69	Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser and Particle Beams, 2007, 25, 371-377.	1.0	84
70	Technicolor walks at the LHC. Physical Review D, 2009, 79, .	4.7	83
71	Relativistic plasma control for single attosecond x-ray burst generation. Physical Review E, 2006, 74, 065401.	2.1	82
72	ℤsub>3scalar singlet dark matter. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 022-022.	5.4	82

#	Article	IF	CITATIONS
73	Deducing the Electron-Beam Diameter in a Laser-Plasma Accelerator Using X-Ray Betatron Radiation. Physical Review Letters, 2012, 108, 075001.	7.8	77
74	AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 76-82.	1.6	77
75	Microengineering Laser Plasma Interactions at Relativistic Intensities. Physical Review Letters, 2016, 116, 085002.	7.8	77
76	Laser based synchrotron radiation. Physics of Plasmas, 2005, 12, 023101.	1.9	76
77	Energy partition, γ-ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction. Physics of Plasmas, 2014, 21, 023109.	1.9	76
78	Micro-scale fusion in dense relativistic nanowire array plasmas. Nature Communications, 2018, 9, 1077.	12.8	71
79	Comparison of supersymmetric spectrum calculations and impact on the relic density constraints from WMAP. Physical Review D, 2005, 72, .	4.7	70
80	Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator. Physical Review Letters, 2011, 107, 145003.	7.8	69
81	Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics. Plasma Physics and Controlled Fusion, 2014, 56, 084013.	2.1	68
82	Requirements on collider data to match the precision of WMAP on supersymmetric dark matter. Journal of High Energy Physics, 2004, 2004, 020-020.	4.7	66
83	micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model. Computer Physics Communications, 2007, 177, 894-895.	7.5	66
84	Dark matter in UED: the role of the second KK level. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 009-009.	5.4	66
85	Bright Betatronlike X Rays from Radiation Pressure Acceleration of a Mass-Limited Foil Target. Physical Review Letters, 2013, 110, 045001.	7.8	66
86	Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases. Physical Review E, 2008, 78, 046406.	2.1	65
87	CERN LHC signatures of new gauge bosons in the minimal Higgsless model. Physical Review D, 2008, 78, .	4.7	65
88	Dark matter with Dirac and Majorana gaugino masses. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 027-027.	5.4	65
89	Stable laser-ion acceleration in the light sail regime. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	65
90	Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Physics of Plasmas, 2002, 9, 3655-3658.	1.9	64

#	Article	IF	CITATIONS
91	Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model. Journal of High Energy Physics, 2005, 2005, 005-005.	4.7	64
92	LHC-friendly minimal freeze-in models. Journal of High Energy Physics, 2019, 2019, 1.	4.7	64
93	Recasting direct detection limits within micrOMECAs and implication for non-standard dark matter scenarios. European Physical Journal C, 2021, 81, 1.	3.9	64
94	Demonstration of the ultrafast nature of laser produced betatron radiation. Physics of Plasmas, 2007, 14, 080701.	1.9	63
95	Positron and gamma-photon production and nuclear reactions in cascade processes initiated by a sub-terawatt femtosecond laser. Applied Physics Letters, 1997, 71, 3471-3473.	3.3	62
96	Study of Electron-Beam Propagation through Preionized Dense Foam Plasmas. Physical Review Letters, 2005, 94, 195001.	7.8	62
97	Monoenergetic electron beam optimization in the bubble regime. Physics of Plasmas, 2005, 12, 056702.	1.9	61
98	Collider aspects of flavor physics at high Q. European Physical Journal C, 2008, 57, 183-307.	3.9	59
99	Constraining the MSSM with universal gaugino masses and implication for searches at the LHC. Journal of High Energy Physics, 2009, 2009, 026-026.	4.7	59
100	Can neutralinos in the MSSM and NMSSM scenarios still be light?. Physical Review D, 2010, 82, .	4.7	59
101	Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Science Advances, 2017, 3, e1601558.	10.3	58
102	Lower limit on the neutralino mass in the general MSSM. Journal of High Energy Physics, 2004, 2004, 012-012.	4.7	56
103	Minimal semi-annihilating ℤsub>Nscalar dark matter. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 021-021.	5.4	56
104	Towards manipulating relativistic laser pulses with micro-tube plasma lenses. Scientific Reports, 2016, 6, 23256.	3.3	56
105	Compton scattering x-ray sources driven by laser wakefield acceleration. Physical Review Special Topics: Accelerators and Beams, 2007, 10, .	1.8	55
106	Path to AWAKE: Evolution of the concept. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 829, 3-16.	1.6	55
107	Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator. Nature Communications, 2013, 4, 2421.	12.8	54
108	Efficient generation of fast ions from surface modulated nanostructure targets irradiated by high intensity short-pulse lasers. Physics of Plasmas, 2011, 18, .	1.9	52

#	Article	IF	CITATIONS
109	Controlling the Spacing of Attosecond Pulse Trains from Relativistic Surface Plasmas. Physical Review Letters, 2011, 106, 185002.	7.8	51
110	Nanoscale Ultradense <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Z</mml:mi></mml:math> -Pinch Formation from Laser-Irradiated Nanowire Arrays. Physical Review Letters, 2016, 117, 035004.	7.8	51
111	Efficient picosecond x-ray pulse generation from plasmas in the radiation dominated regime. Optica, 2017, 4, 1344.	9.3	51
112	Ion acceleration in overdense plasma by short laser pulse. Laser and Particle Beams, 2004, 22, 175-181.	1.0	50
113	Bubble regime of wake field acceleration: similarity theory and optimal scalings. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 623-633.	3.4	50
114	Control of laser-wakefield acceleration by the plasma-density profile. Physical Review E, 2008, 77, 025401.	2.1	49
115	Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch. Physical Review Letters, 2019, 122, 054801.	7.8	49
116	Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities. Physical Review Letters, 2019, 122, 054802.	7.8	49
117	Laser Hole Boring and Hot Electron Generation in the Fast Ignition Scheme. Fusion Science and Technology, 2006, 49, 278-296.	1.1	47
118	Bright X-Ray Source from a Laser-Driven Microplasma Waveguide. Physical Review Letters, 2016, 116, 115001.	7.8	47
119	Light mixed sneutrinos as thermal dark matter. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 017-017.	5.4	46
120	Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser and Particle Beams, 2005, 23, 161-166.	1.0	45
121	X-rays in a flash. Nature Physics, 2006, 2, 439-440.	16.7	45
122	Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror. Nature Communications, 2016, 7, 12515.	12.8	45
123	Dense plasma diagnostics by fast proton beams. Physical Review E, 1998, 57, 3363-3367.	2.1	44
124	An ultra-high gain and efficient amplifier based on Raman amplification in plasma. Scientific Reports, 2017, 7, 2399.	3.3	44
125	Temporal Structure of Attosecond Pulses from Intense Laser-Atom Interactions. Physical Review Letters, 2003, 91, 173002.	7.8	43
126	Dark matter in a constrained next-to-minimal supersymmetric standard model. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 009-009.	5.4	43

#	Article	IF	CITATIONS
127	Dirac neutrino dark matter. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 009.	5.4	43
128	High-current laser-driven beams of relativistic electrons for high energy density research. Plasma Physics and Controlled Fusion, 2020, 62, 115024.	2.1	43
129	Forward-looking insights in laser-generated ultra-intense Î ³ -ray and neutron sources for nuclear application and science. Nature Communications, 2022, 13, 170.	12.8	43
130	Gamma-ray generation in ultrahigh-intensity laser-foil interactions. Physics of Plasmas, 2014, 21, 013109.	1.9	42
131	Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse. New Journal of Physics, 2010, 12, 045019.	2.9	41
132	STUDIES ON THE LIFE HISTORY OF THE CLUB ROOT ORGANISM, PLASMODIOPHORA BRASSICAE. Canadian Journal of Research, 1944, 22c, 143-149.	0.3	40
133	Strongly interacting vector bosons at TeVe±eâ^'linear colliders. Physical Review D, 1998, 57, 1553-1572.	4.7	40
134	Intense laser pulse propagation and channel formation through plasmas relevant for the fast ignitor scheme. Physics of Plasmas, 1999, 6, 2185-2190.	1.9	39
135	Observation of Fine Structures in Laser-Driven Electron Beams Using Coherent Transition Radiation. Physical Review Letters, 2007, 98, 194801.	7.8	39
136	Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets. Scientific Reports, 2017, 7, 42666.	3.3	39
137	Probing non-perturbative QED with electron-laser collisions. Scientific Reports, 2019, 9, 9407.	3.3	39
138	AWAKE readiness for the study of the seeded self-modulation of a 400 GeV proton bunch. Plasma Physics and Controlled Fusion, 2018, 60, 014046.	2.1	37
139	Analytic and numerical study of magnetic fields in the plasma wake of an intense laser pulse. Physics of Plasmas, 1998, 5, 3764-3773.	1.9	36
140	Controlled wake field acceleration via laser pulse shaping. IEEE Transactions on Plasma Science, 1996, 24, 393-399.	1.3	35
141	Relic density of neutralino dark matter in the MSSM withCPviolation. Physical Review D, 2006, 73, .	4.7	35
142	Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil. Physics of Plasmas, 2011, 18, .	1.9	35
143	Electron dynamics in twisted light modes of relativistic intensity. Physics of Plasmas, 2018, 25, .	1.9	35
144	Electromagnetically induced guiding of counterpropagating lasers in plasmas. Physical Review E, 1999, 59, 1033-1037.	2.1	34

#	Article	IF	CITATIONS
145	Single top production in \$e^+ e^-\$, \$e^- e^-\$, \$gamma e\$ and \$gamma gamma\$ collisions. European Physical Journal C, 2001, 21, 81-91.	3.9	34
146	Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons. Physical Review E, 2006, 74, 045401.	2.1	33
147	Polarized electron-beam acceleration driven by vortex laser pulses. New Journal of Physics, 2019, 21, 073052.	2.9	33
148	Generation of periodic accelerating structures in plasma by colliding laser pulses. Physical Review E, 1999, 60, 2218-2223.	2.1	32
149	Plasma-based methods for electron acceleration: current status and prospects. Physics-Uspekhi, 2015, 58, 81-88.	2.2	32
150	Relativistic laser channeling in plasmas for fast ignition. Physical Review E, 2007, 76, 066403.	2.1	31
151	Testing minimal universal extra dimensions using Higgs boson searches at the LHC. Physical Review D, 2013, 87, .	4.7	31
152	Isospin-violating dark matter from a double portal. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 020-020.	5.4	31
153	Field-Reversed Bubble in Deep Plasma Channels for High-Quality Electron Acceleration. Physical Review Letters, 2014, 113, 245003.	7.8	30
154	Scaling laws for the depolarization time of relativistic particle beams in strong fields. Physical Review Accelerators and Beams, 2020, 23, .	1.6	30
155	Relativistic laser plasmas for electron acceleration and short wavelength radiation generation. Plasma Physics and Controlled Fusion, 2010, 52, 124039.	2.1	29
156	PAMELA and FERMI limits on the neutralino-chargino mass degeneracy. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 028-028.	5.4	29
157	Effect of plasma inhomogeneity on plasma wakefield acceleration driven by long bunches. Physics of Plasmas, 2013, 20, 013102.	1.9	29
158	Laser acceleration of electrons and ions and intense secondary particle generation. Progress in Particle and Nuclear Physics, 2001, 46, 375-377.	14.4	28
159	Influence of Surface Waves on Plasma High-Order Harmonic Generation. Physical Review Letters, 2012, 108, 125002.	7.8	28
160	Short, relativistically strong laser pulse in a narrow channel. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 195, 84-89.	2.1	27
161	Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam. Applied Physics Letters, 2009, 94, .	3.3	27
162	A multidimensional theory for electron trapping by a plasma wake generated in the bubble regime. New Journal of Physics, 2010, 12, 045009.	2.9	27

#	Article	IF	CITATIONS
163	Thomson scattering on inhomogeneous targets. Physical Review E, 2010, 82, 056404.	2.1	27
164	SLHAplus: A library for implementing extensions of the standard model. Computer Physics Communications, 2011, 182, 763-774.	7.5	27
165	Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection. Physical Review E, 2019, 100, 043202.	2.1	27
166	Interplay of the LHC and non-LHC dark matter searches in the effective field theory approach. Physical Review D, 2019, 99, .	4.7	27
167	Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities. Plasma Physics and Controlled Fusion, 2020, 62, 014013.	2.1	27
168	Evidence of relativistic laser beam filamentation in back-reflected images. Physical Review E, 2000, 62, 2672-2677.	2.1	26
169	Hot electron and x-ray production from intense laser irradiation of wavelength-scale polystyrene spheres. Physics of Plasmas, 2007, 14, 062704.	1.9	26
170	Exploring the CP-violating Inert-Doublet Model. Journal of High Energy Physics, 2011, 2011, 1.	4.7	26
171	Bright tunable femtosecond x-ray emission from laser irradiated micro-droplets. Applied Physics Letters, 2014, 105, .	3.3	26
172	Optimization of laser-nanowire target interaction to increase the proton acceleration efficiency. Plasma Physics and Controlled Fusion, 2019, 61, 065016.	2.1	26
173	Particle physics with petawatt class lasers. Laser and Particle Beams, 1999, 17, 565-570.	1.0	25
174	Propagation of relativistic surface harmonics radiation in free space. Physics of Plasmas, 2007, 14, .	1.9	25
175	Collision-Driven Negative-Energy Waves and the Weibel Instability of a Relativistic Electron Beam in a Quasineutral Plasma. Physical Review Letters, 2008, 101, 255001.	7.8	25
176	Discriminating dark matter candidates using direct detection. Physical Review D, 2009, 79, .	4.7	25
177	Study of ultraintense laser propagation in overdense plasmas for fast ignition. Physics of Plasmas, 2009, 16, 056307.	1.9	25
178	Stabilized radiation pressure dominated ion acceleration from surface modulated thin-foil targets. Physics of Plasmas, 2011, 18, .	1.9	25
179	Polarized proton beams from laser-induced plasmas. High Power Laser Science and Engineering, 2019, 7,	4.6	25
180	Strongly interacting vector bosons at TeVe±eⴒlinear colliders: Addendum. Physical Review D, 2000, 61,	4.7	24

#	Article	IF	CITATIONS
181	Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 023-023.	5.4	24
182	Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses. Nature Photonics, 2020, 14, 607-611.	31.4	24
183	Relativistic Laser Plasma Interaction. , 2001, , 167-192.		24
184	Leptoquark manoeuvres in the dark: a simultaneous solution of the dark matter problem and the \$\$ {R}_{D^{left(ast ight)}} \$\$ anomalies. Journal of High Energy Physics, 2022, 2022, 1.	4.7	24
185	Magnetic fields from high-intensity laser pulses in plasmas. Plasma Physics and Controlled Fusion, 1997, 39, B261-B272.	2.1	23
186	Detailed particle-in-cell simulations on the transport of a relativistic electron beam in plasmas. Physical Review E, 2009, 80, 016401.	2.1	23
187	Natural noise and external wakefield seeding in a proton-driven plasma accelerator. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	23
188	Interaction of regular structures with smallâ€scale fluctuations in driftâ€wave turbulence. Physics of Fluids B, 1992, 4, 336-348.	1.7	22
189	Analysis of wakefield electron orbits in plasma wiggler. Physics of Plasmas, 2008, 15, .	1.9	22
190	High quality GeV proton beams from a density-modulated foil target. Laser and Particle Beams, 2009, 27, 611-617.	1.0	22
191	The right-handed sneutrino as thermal dark matter in U(1) extensions of the MSSM. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 014-014.	5.4	22
192	Plasma wakefield excitation with a 24 GeV proton beam. Plasma Physics and Controlled Fusion, 2011, 53, 014003.	2.1	22
193	Non-linear theory of a cavitated plasma wake in a plasma channel for special applications and control. Physics of Plasmas, 2016, 23, 053108.	1.9	22
194	Relativistic plasma control for single attosecond pulse generation: Theory, simulations, and structure of the pulse. Laser and Particle Beams, 2007, 25, 339-346.	1.0	21
195	Voronoi particle merging algorithm for PIC codes. Computer Physics Communications, 2016, 202, 165-174.	7.5	20
196	Laser wakefield and direct acceleration with ionization injection. Plasma Physics and Controlled Fusion, 2016, 58, 034011.	2.1	20
197	X-dispersionless Maxwell solver for plasma-based particle acceleration. Journal of Computational Physics, 2020, 418, 109622.	3.8	20
198	Monoenergetic High-Energy Ion Source via Femtosecond Laser Interacting with a Microtape. Physical Review X, 2021, 11, .	8.9	20

#	Article	IF	CITATIONS
199	LEPTOQUARK PAIR PRODUCTION AT ep COLLIDERS. Modern Physics Letters A, 1994, 09, 3007-3021.	1.2	19
200	Optimal chirped probe pulse length for terahertz pulse measurement. Optics Express, 2008, 16, 12342.	3.4	19
201	Control of target-normal-sheath-accelerated protons from a guiding cone. Physics of Plasmas, 2015, 22, .	1.9	19
202	Relativistic Interaction of Long-Wavelength Ultrashort Laser Pulses with Nanowires. Physical Review X, 2019, 9, .	8.9	19
203	Directed Acceleration of Electrons from a Solid Surface by Sub-10-fs Laser Pulses. Physical Review Letters, 2009, 102, 195001.	7.8	18
204	Phenomenology of charged scalars in the CP-violating inert-doublet model. Journal of High Energy Physics, 2013, 2013, 1.	4.7	18
205	Probing U(1) extensions of the MSSM at the LHC Run I and in dark matter searches. Journal of High Energy Physics, 2015, 2015, 1.	4.7	18
206	Dark Matter characterization at the LHC in the Effective Field Theory approach. Journal of High Energy Physics, 2017, 2017, 1.	4.7	18
207	Dark matter abundance from the sequential freeze-in mechanism. Physical Review D, 2020, 102, .	4.7	18
208	Analytical approach to high harmonics spectrum in the nanobunching regime. Physics of Plasmas, 2016, 23, 103301.	1.9	17
209	Analytic model for electromagnetic fields in the bubble regime of plasma wakefield in non-uniform plasmas. Physics of Plasmas, 2017, 24, 103104.	1.9	17
210	Efficient generation of  â^¼100 MeV ions from ultrashort  â^¼10 ²¹ W cm ^{â interaction with a waveguide target. Nuclear Fusion, 2019, 59, 066034.}	i^'2	laser pulse
211	The Z5 model of two-component dark matter. Journal of High Energy Physics, 2020, 2020, 1.	4.7	17
212	Dynamics of laser mass-limited foil interaction at ultra-high laser intensities. Physics of Plasmas, 2014, 21, .	1.9	16
213	Laser-solid interaction and its potential for probing radiative corrections in strong-field quantum electrodynamics. Plasma Physics and Controlled Fusion, 2019, 61, 074010.	2.1	16
214	All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields. Communications Physics, 2022, 5, .	5.3	16
215	Two dark matter candidates: The case of inert doublet and singlet scalars. Physical Review D, 2022, 105,	4.7	16
216	Characterization of two distinct, simultaneous hot electron beams in intense laser-solid interactions. Physical Review E, 2009, 80, 055402.	2.1	15

#	Article	IF	CITATIONS
217	Ion acceleration in the â€~dragging field' of a light-pressure-driven piston. New Journal of Physics, 2014, 16, 063047.	2.9	15
218	Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab. Nature Communications, 2018, 9, 1601.	12.8	15
219	Spin Filter for Polarized Electron Acceleration in Plasma Wakefields. Physical Review Applied, 2020, 13,	3.8	15
220	Dynamics of Drift Vortices in Collision Plasmas. Physica Scripta, 1987, 35, 677-681.	2.5	14
221	Excitation of accelerating plasma waves by counter-propagating laser beams. Physics of Plasmas, 2002, 9, 2383-2392.	1.9	14
222	Particle and x-ray generation by irradiation of gaseous and solid targets with a 100 TW laser pulse. Plasma Physics and Controlled Fusion, 2009, 51, 124049.	2.1	14
223	Higgs boson in the MSSM in light of the LHC. Physical Review D, 2012, 85, .	4.7	14
224	Near QED regime of laser interaction with overdense plasmas. European Physical Journal: Special Topics, 2014, 223, 1069-1082.	2.6	14
225	Magnetic interaction of ultrashort high-intensity laser pulses in plasmas. Plasma Physics and Controlled Fusion, 1997, 39, A137-A144.	2.1	13
226	Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror. European Physical Journal D, 2009, 55, 407-414.	1.3	13
227	Exploring novel target structures for manipulating relativistic laser–plasma interaction. High Power Laser Science and Engineering, 2017, 5, .	4.6	13
228	Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma. Physical Review Letters, 2021, 126, 164802.	7.8	13
229	Top quark production in the reaction \$e^+e^- longrightarrow eu tb\$ at linear collider energies. Zeitschrift Für Physik C-Particles and Fields, 1996, 70, 255-261.	1.5	12
230	Three-Dimensional Relativistic Particle-in-Cell Hybrid Code Based on an Exponential Integrator. IEEE Transactions on Plasma Science, 2010, 38, 2383-2389.	1.3	12
231	Raman amplification in the coherent wave-breaking regime. Physical Review E, 2015, 92, 063109.	2.1	12
232	High field terahertz emission from relativistic laser-driven plasma wakefields. Physics of Plasmas, 2015, 22, .	1.9	12
233	Limits on dark matter proton scattering from neutrino telescopes using micrOMEGAs. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	5.4	12
994	Influence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:m< td=""><td>ıo>ậ^',<td>nl:mg></td></td></mml:m<></mml:msup></mml:mrow></mml:math 	ıo>ậ^', <td>nl:mg></td>	nl:mg>

234 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>e</mml:mi>e</mml:mi><mml:mo>â^{**}</mml:mo></mml:mc>2.1
234 creation on the radiative trapping in ultraintense fields of colliding laser pulses. Physical Review E, 2016, 94, 063204.

#	Article	IF	CITATIONS
235	Beam loading in the bubble regime in plasmas with hollow channels. Physics of Plasmas, 2016, 23, 093114.	1.9	12
236	Generalised model of a sheath of a plasma bubble excited by a short laser pulse or by a relativistic electron bunch in transversely inhomogeneous plasma. Quantum Electronics, 2016, 46, 295-298.	1.0	12
237	Status and prospects of the nMSSM after LHC Run-1. Journal of High Energy Physics, 2016, 2016, 1.	4.7	12
238	Stable Particle Acceleration in Coaxial Plasma Channels. Physical Review Letters, 2018, 121, 264801.	7.8	12
239	Bright betatron x-rays generation from picosecond laser interactions with long-scale near critical density plasmas. Applied Physics Letters, 2021, 118, .	3.3	12
240	Ultrashort focused electromagnetic pulses. Physical Review E, 2009, 79, 016603.	2.1	11
241	Target shape effects on monoenergetic GeV proton acceleration. New Journal of Physics, 2010, 12, 045004.	2.9	11
242	Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity. Matter and Radiation at Extremes, 2021, 6, .	3.9	11
243	Physics of ultra-intense laser-plasma interaction. Plasma Physics and Controlled Fusion, 1999, 41, B221-B230.	2.1	10
244	Physics of short pulse laser plasma interaction by multi-dimensional particle-in-cell simulations. Laser and Particle Beams, 1999, 17, 571-578.	1.0	10
245	Acceleration and compression of charged particle bunches using counterpropagating laser beams. IEEE Transactions on Plasma Science, 2000, 28, 1185-1192.	1.3	10
246	Self-similar quasineutral expansion of a collisionless plasma with tailored electron temperature profile. Physics of Plasmas, 2008, 15, .	1.9	10
247	Higgs Phenomenology of Minimal Universal Extra Dimensions. EPJ Web of Conferences, 2012, 28, 12070.	0.3	10
248	Scaling electron acceleration in the bubble regime for upcoming lasers. European Physical Journal: Special Topics, 2014, 223, 1017-1030.	2.6	10
249	Magnetic field amplification to gigagauss scale via hydrodynamic flows and dynamos driven by femtosecond lasers. New Journal of Physics, 2021, 23, 063054.	2.9	10
250	Higgs and top production in the reaction \$gamma e longrightarrow u b ar{b} W\$ at TeV linear collider energies. Zeitschrift Für Physik C-Particles and Fields, 1997, 75, 237-244.	1.5	9
251	Relativistic laser propagation through underdense and overdense plasmas. Laser and Particle Beams, 2001, 19, 5-13.	1.0	9
			_

252 Update of Proton Driven Plasma Wakefield Acceleration. , 2010, , .

#	Article	IF	CITATIONS
253	Laser-seeded modulation instability in a proton driver plasma wakefield accelerator. Physics of Plasmas, 2013, 20, 103111.	1.9	9
254	Coherent acceleration by laser pulse echelons in periodic plasma structures. European Physical Journal: Special Topics, 2014, 223, 1197-1206.	2.6	9
255	Polarized proton beams from a laser-plasma accelerator. International Journal of Modern Physics A, 2019, 34, 1942028.	1.5	9
256	Scaling laws for laser-driven ion acceleration from nanometer-scale ultrathin foils. Physical Review E, 2021, 104, 025210.	2.1	9
257	Efficient Narrow-Band Terahertz Radiation from Electrostatic Wakefields in Nonuniform Plasmas. Physical Review Letters, 2021, 127, 175001.	7.8	9
258	Ion acceleration and D-D fusion neutron generation in relativistically transparent deuterated nanowire arrays. Physical Review Research, 2021, 3, .	3.6	9
259	Influence of laser pulse duration on relativistic channels. Physics of Plasmas, 2002, 9, 937-940.	1.9	8
260	Radiative losses in plasma accelerators. Journal of Experimental and Theoretical Physics, 2006, 103, 800-807.	0.9	8
261	Full characterization of a laser-produced keV x-ray betatron source. Plasma Physics and Controlled Fusion, 2008, 50, 124008.	2.1	8
262	Betatron-like resonance in ultra-intense laser mass-limited foil interaction. Plasma Physics and Controlled Fusion, 2013, 55, 085021.	2.1	8
263	Temporal and spatial expansion of a multi-dimensional model for electron acceleration in the bubble regime. Laser and Particle Beams, 2014, 32, 277-284.	1.0	8
264	Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide. Scientific Reports, 2016, 6, 28147.	3.3	8
265	Proton-driven plasma wakefield acceleration in AWAKE. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180418.	3.4	8
266	Boosted acceleration of protons by tailored ultra-thin foil targets. Scientific Reports, 2019, 9, 18672.	3.3	8
267	On the robustness of spin polarization for magnetic vortex accelerated proton bunches in density down-ramps. Plasma Physics and Controlled Fusion, 2021, 63, 085011.	2.1	8
268	TJ cm ^{â^'3} high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires. Plasma Physics and Controlled Fusion, 2021, 63, 015014.	2.1	8
269	Experimental study of wakefields driven by a self-modulating proton bunch in plasma. Physical Review Accelerators and Beams, 2020, 23, .	1.6	8
270	Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma. Physical Review Letters, 2022, 129, .	7.8	8

#	Article	IF	CITATIONS
271	Inertial confinement fusion and fast ignitor studies. Nuclear Fusion, 2000, 40, 537-545.	3.5	7
272	Three-dimensional filamentary structures of a relativistic electron beam in fast ignition plasmas. Physics of Plasmas, 2008, 15, 120702.	1.9	7
273	Super-filament formation of a relativistic Gaussian electron beam in a dense collisional plasma. New Journal of Physics, 2013, 15, 035021.	2.9	7
274	Polarization-tunable terahertz radiation in the high-field regime. Optics Letters, 2016, 41, 2660.	3.3	7
275	Generation of attosecond electron packets in the interaction of ultraintense Laguerre – Gaussian laser beams with plasma. Quantum Electronics, 2017, 47, 194-198.	1.0	7
276	Absolute laser energy absorption measurement of relativistic 0.7 ps laser pulses in nanowire arrays. Physics of Plasmas, 2021, 28, .	1.9	7
277	Magnetic interaction and magnetic wake of high intensity laser pulses in plasmas. Physica Scripta, 1996, T63, 280-283.	2.5	6
278	Neutralino relic density from ILC measurements in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>C</mml:mi><mml:mi>P</mml:mi>-violating MSSM. Physical Review D, 2008, 78, .</mml:math 	4.7	6
279	Fast multidimensional model for the simulation of Raman amplification in plasma. Physical Review E, 2013, 88, 063104.	2.1	6
280	Electron acceleration in intense laser – solid interactions at parallel incidence. Quantum Electronics, 2021, 51, 833-837.	1.0	6
281	Numerical simulation of Kolmogorov spectra of long-wavelength drift turbulence. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 141, 154-156.	2.1	5
282	Relativistic laser–plasma bubbles: new sources of energetic particles and x-rays. Nuclear Fusion, 2004, 44, S191-S201.	3.5	5
283	Focusing of laser-generated ion beams by a plasma cylinder: Similarity theory and the thick lens formula. Physics of Plasmas, 2006, 13, 063103.	1.9	5
284	Transformer ratio saturation in a beam-driven wakefield accelerator. Physics of Plasmas, 2015, 22, .	1.9	5
285	Theory of a double-quantum-dot spaser. Quantum Electronics, 2015, 45, 245-249.	1.0	5
286	Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime. Physics of Plasmas, 2016, 23, .	1.9	5
287	Wavebreaking-associated transmitted emission of attosecond extreme-ultraviolet pulses from laser-driven overdense plasmas. New Journal of Physics, 2016, 18, 063014.	2.9	5
288	Simulation of Polarized Beams from Laser-Plasma Accelerators. Journal of Physics: Conference Series, 2020, 1596, 012013.	0.4	5

#	Article	IF	CITATIONS
289	Betatron radiation diagnostics for AWAKE Run 2. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 971, 164076.	1.6	5
290	Proton Bunch Self-Modulation in Plasma with Density Gradient. Physical Review Letters, 2020, 125, 264801.	7.8	5
291	Radiation at 2ï‰[sub p] from inverse two-plasmon decay in overdense plasma driven by ultra-short laser pulses. , 1998, , .		4
292	Terawatt CO 2 laser: a new tool for strong-field research. , 2006, 6261, 359.		4
293	Proton and Ion Beams Generated with Picosecond CO[sub 2] Laser Pulses. , 2009, , .		4
294	Interplay of collisions and temperature on the filamentary structures of a relativistic electron beam in plasmas. European Physical Journal D, 2009, 55, 415-420.	1.3	4
295	Response to "Comment on â€~Phenomenological theory of laser-plasma interaction in "bubble―regime'â [Phys. Plasmas 17, 054703 (2010)]. Physics of Plasmas, 2010, 17, 054704.	€‰â€• 1.9	4
296	Transverse coherent transition radiation for diagnosis of modulated proton bunches. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	4
297	Principles of self-modulated proton driven plasma wake field acceleration. AIP Conference Proceedings, 2013, , .	0.4	4
298	Study of Laser Wakefield Accelerators as injectors for Synchrotron light sources. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 740, 153-157.	1.6	4
299	AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN. Nuclear and Particle Physics Proceedings, 2016, 273-275, 175-180.	0.5	4
300	Proton acceleration in a laser-induced relativistic electron vortex. Journal of Plasma Physics, 2019, 85, .	2.1	4
301	Highly Efficient Heavy Ion Acceleration from Laser Interaction with Dusty Plasma. Advanced Photonics Research, 2021, 2, 2000181.	3.6	4
302	Beamstrahlung-enhanced disruption in beam–beam interaction. New Journal of Physics, 2021, 23, 103040.	2.9	4
303	Positron acceleration via laser-augmented blowouts in two-column plasma structures. Physical Review E, 2022, 105, .	2.1	4
304	Laser-driven undulator radiation. , 1999, , .		3
305	Studies of the fast ignition route to inertial confinement fusion at the Rutherford Appleton Laboratory. Fusion Engineering and Design, 1999, 44, 239-243.	1.9	3
306	Neutralino dark matter in the MSSM with CP violation. AIP Conference Proceedings, 2006, , .	0.4	3

#	Article	IF	CITATIONS
307	Relativistic laser plasmas for novel radiation sources. European Physical Journal: Special Topics, 2009, 175, 25-33.	2.6	3
308	Simultaneous generation of monoenergetic tunable protons and carbon ions from laser-driven nanofoils. Optics Express, 2013, 21, 22558.	3.4	3
309	H-VLPL: A three-dimensional relativistic PIC/fluid hybrid code. Journal of Computational Physics, 2014, 269, 168-180.	3.8	3
310	Plasma-based polarization modulator for high-intensity lasers. Physics of Plasmas, 2016, 23, 123107.	1.9	3
311	Beam load structures in a basic relativistic interaction model. Physics of Plasmas, 2017, 24, 013101.	1.9	3
312	Schlieren imaging for the determination of the radius of an excited rubidium column. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 387-390.	1.6	3
313	Excitation of strongly nonlinear plasma wakefield by electron bunches. Plasma Physics and Controlled Fusion, 2021, 63, 085004.	2.1	3
314	Effect of transverse displacement of charged particle beams on quantum electrodynamic processes during their collision. Quantum Electronics, 2021, 51, 807-811.	1.0	3
315	Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients. Physical Review Accelerators and Beams, 2021, 24, .	1.6	3
316	Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch. Physical Review Accelerators and Beams, 2021, 24, .	1.6	3
317	Fixing E-field divergence in strongly non-linear wakefields in homogeneous plasma. Plasma Physics and Controlled Fusion, 2020, 62, 115017.	2.1	3
318	Ultra intense magnetic fields in laser plasma interaction: their generation and influence on light propagation. , 1998, , .		2
319	<title>Intense ion beams accelerated by relativistic laser plasmas</title> . , 2001, 4510, 52.		2
320	Batch calculations in CalcHEP. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 502, 573-575.	1.6	2
321	Laser WakeField Acceleration of 170 MeV Quasi-Monoenergetic Electron Beams. , 0, , .		2
322	DEVELOPMENT OF LASER BASED SYNCHROTRON X-RAY SOURCE. International Journal of Modern Physics B, 2007, 21, 497-507.	2.0	2
323	One-dimensional electromagnetic relativistic PIC-hydrodynamic hybrid simulation code H-VLPL (hybrid) Tj ETQq1	1 0.78431 7.5	4 rgBT /Over
324	Quasi-monoenergetic electron acceleration in relativistic laser-plasmas. Comptes Rendus Physique, 2009, 10, 159-166.	0.9	2

#	Article	IF	CITATIONS
325	Reply to Comment on "Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror". European Physical Journal D, 2010, 58, 139-140.	1.3	2
326	Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator. Physics of Plasmas, 2016, 23, 053109.	1.9	2
327	Analytical description of attosecond pulse generation on a plasma surface irradiated by high-intense laser pulses. Quantum Electronics, 2016, 46, 353-360.	1.0	2
328	External electron injection, trapping, and emittance evolution in the blow-out regime. Physics of Plasmas, 2018, 25, 123112.	1.9	2
329	Two-dimensional structures of electron bunches in relativistic plasma cavities. Physical Review E, 2018, 98, 013201.	2.1	2
330	Static properties of the ⁹ Be nucleus in the ground and excited states in the cluster model. Physica Scripta, 2019, 94, 085301.	2.5	2
331	Superluminal phase velocity approach for suppression of Numerical Cherenkov Instability in Maxwell solver. Journal of Physics: Conference Series, 2020, 1692, 012002.	0.4	2
332	Relativistic laser plasma interactions: Pulse shape modification and magnetic field generation. AIP Conference Proceedings, 1997, , .	0.4	1
333	The Fast Ignitor. Europhysics News, 1998, 29, 219-220.	0.3	1
334	Short pulse interaction experiments for fast ignitor applications. Laser and Particle Beams, 2000, 18, 389-397.	1.0	1
335	Intense ion beams accelerated by ultra-intense laser pulses. AIP Conference Proceedings, 2002, , .	0.4	1
336	Development of a collimated keV X-ray beam for probing of dense plasmas. European Physical Journal Special Topics, 2006, 133, 473-477.	0.2	1
337	Bringing picosecond CO 2 lasers to the forefront of strong-field applications. , 2006, 6346, 275.		1
338	Scalable Dynamics of High Energy Relativistic Electrons: Theory, Numerical Simulations and Experimental Results. Astrophysics and Space Science, 2007, 307, 335-340.	1.4	1
339	Coherent Thomson scattering at laser compressed and accelerated electron bunches. , 2009, , .		1
340	Betatron radiation based measurement of the electron-beam size in a wakefield accelerator. , 2012, , .		1
341	Characterizing Laser Plasma Electron Accelerators with Betatron Radiation. , 2014, , .		1
342	Applicability of the envelope model. , 2015, , .		1

20

0

#	Article	IF	CITATIONS
343	Laser fields in dynamically ionized plasma structures for coherent acceleration. European Physical Journal: Special Topics, 2015, 224, 2625-2629.	2.6	1
344	TeV acceleration in a Matryoshka plasma channel. Journal of Physics: Conference Series, 2020, 1596, 012065.	0.4	1
345	The filamented electron bunch of the bubble regime. Laser and Particle Beams, 2020, 38, 121-127.	1.0	1
346	Relativistic laser channeling into high-density plasmas. European Physical Journal Special Topics, 2006, 133, 409-412.	0.2	1
347	Transformer-ratio optimization in nonlinearly driven hollow plasma channels. Physical Review Accelerators and Beams, 2019, 22, .	1.6	1
348	Dense Electron-Positron Pair Production in Ultra-intense Laser Cone Interaction . , 2016, , .		1
349	Spin-Polarized Particle Beams from Laser-Plasma Based Accelerators. Journal of Physics: Conference Series, 2022, 2249, 012018.	0.4	1
350	Fast ignitor concept. Numerical simulation. AIP Conference Proceedings, 1996, , .	0.4	0
351	Generation and diagnostics of a low-temperature, high-pressure ablation plasma. Technical Physics, 1997, 42, 439-441.	0.7	0
352	Nonlinear stage of instability evolution in a monostable active medium. Technical Physics Letters, 1998, 24, 545-546.	0.7	0
353	Relativistic nonlinear optics in plasmas by 3D PIC simulations. , 1998, , .		0
354	Magnetic field generation in a low density plasma wake of a short laser pulse. , 1998, , .		0
355	Electromagnetically induced guiding and superradiant amplification of counter-propagating lasers in plasma. , 1999, , .		0
356	Generation of phase-controlled accelerating structures in plasma. , 0, , .		0
357	Branching Fraction Measurements of the SM Higgs with a Mass of 160 GeV at Future Linear e+e? Colliders. EPJ Direct, 2000, 2, 1-19.	0.1	0
358	Relativistic channel formation with different pulse durations. AIP Conference Proceedings, 2002, , .	0.4	0
359	Laser High Harmonics and Sub-Attosecond Pulses from Plasma Surfaces. , 2005, , JTuD3.		0

360 Ultrafast X-ray and hard X-ray sources from relativistic laser-matter interaction. , 2005, , .

#	Article	IF	CITATIONS
361	All optical ultrafast synchrotron hard x-ray source. AIP Conference Proceedings, 2006, , .	0.4	Ο
362	Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and of laser-accelerated electrons. , 2007, , .		0
363	Relativistic Laser-Plasma Physics. Springer Series in Optical Sciences, 2008, , 427-453.	0.7	0
364	Influence of beam temperature and plasma collisions on the Weibel instability. , 2008, , .		0
365	Direct detection: discriminating dark matter candidates. EAS Publications Series, 2009, 36, 197-202.	0.3	0
366	Terahertz radiation from the interaction of laser pulses with gas target. , 2009, , .		0
367	Hamiltonian model for plasma electron trapping and acceleration in multidimensional plasma wake field. , 2010, , .		0
368	Publisher's Note: Deducing the Electron-Beam Diameter in a Laser-Plasma Accelerator Using X-Ray Betatron Radiation [Phys. Rev. Lett.108, 075001 (2012)]. Physical Review Letters, 2012, 108, .	7.8	0
369	Laser-seeded modulation instability within LHC proton beams. , 2013, , .		0
370	Ultra-High Energy Density Relativistic Plasmas and X-ray Generation by Ultrafast Laser Irradiation of Nanowire Arrays. , 2014, , .		0
371	Optimized stability of a modulated driver in a plasma wakefield accelerator. Laser and Particle Beams, 2016, 34, 519-526.	1.0	Ο
372	High Repetition Rate Soft X-Ray Lasers and Bright Table-top X-Ray Plasma Sources from Nanostructured Targets. , 2016, , .		0
373	Wide-aperture planar lasers. Journal of Communications Technology and Electronics, 2016, 61, 551-573.	0.5	0
374	Strong ionisation in carbon nanowires. Quantum Electronics, 2016, 46, 327-331.	1.0	0
375	Quasi-stable injection channels in a wakefield accelerator. Physics of Plasmas, 2016, 23, 053112.	1.9	Ο
376	X-ray Generation From Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Nanowire Arrays. Springer Proceedings in Physics, 2016, , 139-145.	0.2	0
377	Bubble regime in deep plasma channels. AIP Conference Proceedings, 2017, , .	0.4	0
378	Laser amplifier based on Raman amplification in plasma (Conference Presentation). , 2017, , .		0

#	Article	IF	CITATIONS
379	Delta-layer model for the boundary of a bubble excited by an electron bunch or laser pulse in a plasma channel. Quantum Electronics, 2017, 47, 228-231.	1.0	0
380	X-ray emission from nanostructured targets irradiated by a relativistically intense mid-infrared driver. , 2017, , .		0
381	Cerenkov-free RIP Maxwell solver: dispersionless along X. Journal of Physics: Conference Series, 2020, 1596, 012053.	0.4	0
382	Summary of Working Group 8: Advanced and Novel Accelerators for High Energy Physics. Journal of Physics: Conference Series, 2020, 1596, 012064.	0.4	0
383	Finite-emittance Wigner crystals in the bubble regime. Laser and Particle Beams, 2020, 38, 176-180.	1.0	0
384	Pulse compression in plasma: generation of femtosecond pulses without CPA. , 2000, , .		0
385	Pulse Compression in Plasma: Generation of Femtosecond Pulses Without CPA. Springer Series in Chemical Physics, 2001, , 311-313.	0.2	0
386	Laser wake field acceleration in bubble regime: quasi-monoenergetic electron bunches and flashes of synchrotron radiation. , 2003, , .		0
387	High Intensity Laser Propagation though Overdense Plasmas. The Review of Laser Engineering, 2008, 36, 1139-1141.	0.0	0
388	Proton and Ion Acceleration by an Ultrafast TW CO2 Laser: proof-of-principle experiments. , 2008, , .		0
389	Collider aspects of flavor physics at high Q. Advances in the Physics of Particles and Nuclei, 2009, , 171-295.	0.1	0
390	Relativistic Laser Plasmas for Electron Acceleration and Short Wavelength Radiation Generation. Springer Series in Chemical Physics, 2011, , 191-223.	0.2	0
391	Super-radiant amplification of ultra-short (<10fs) laser pulses in plasmas. , 1999, , .		0
392	Direct Laser Acceleration of Electrons in Relativistic Plasma Channels. , 1999, , .		0
393	Micro-Scale Fusion in Dense Nanowire Arrays Irradiated by Femtosecond Laser Pulses of Relativistic Intensity. , 2018, , .		0
394	Scalable Dynamics of High Energy Relativistic Electrons: Theory, Numerical Simulations and Experimental Results. , 2006, , 335-340.		0
395	Analysis of proton bunch parameters in the AWAKE experiment. Journal of Instrumentation, 2021, 16, P11031.	1.2	0
396	Spatial profile of accelerated electrons from ponderomotive scattering in hydrogen cluster targets. New Journal of Physics, 0, , .	2.9	0

#	Article	IF	CITATIONS
397	Optimized laser-assisted electron injection into a quasilinear plasma wakefield. Physical Review E, 2022, 105, 035201.	2.1	0
398	р40. , 0, , 355-356.		0
399	Suppression of errors in simulated ultrarelativistic bunch propagation using the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>X</mml:mi> -dispersionless Maxwell solver. Physical Review Accelerators and Beams, 2022, 25, .</mml:math 	1.6	0