
Eliot M Herman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture Research, 2007, 38, 551-579.	1.8	1,660
2	Protein Storage Bodies and Vacuoles. Plant Cell, 1999, 11, 601-613.	6.6	374
3	Genetic Modification Removes an Immunodominant Allergen from Soybean,. Plant Physiology, 2003, 132, 36-43.	4.8	301
4	Vegetative and Seed-Specific Forms of Tonoplast Intrinsic Protein in the Vacuolar Membrane of <i>Arabidopsis thaliana</i> . Plant Physiology, 1992, 99, 561-570.	4.8	231
5	The Role of Aquaporins and Membrane Damage in Chilling and Hydrogen Peroxide Induced Changes in the Hydraulic Conductance of Maize Roots. Plant Physiology, 2005, 137, 341-353.	4.8	230
6	An Abundant, Highly Conserved Tonoplast Protein in Seeds. Plant Physiology, 1989, 91, 1006-1013.	4.8	197
7	Dinoflagellate Expressed Sequence Tag Data Indicate Massive Transfer of Chloroplast Genes to the Nuclear Genome. Protist, 2004, 155, 65-78.	1.5	154
8	Characterization of a Maize Tonoplast Aquaporin Expressed in Zones of Cell Division and Elongation1. Plant Physiology, 1998, 117, 1143-1152.	4.8	142
9	A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. Plant Molecular Biology, 1988, 11, 717-729.	3.9	137
10	Silencing of Soybean Seed Storage Proteins Results in a Rebalanced Protein Composition Preserving Seed Protein Content without Major Collateral Changes in the Metabolome and Transcriptome Â. Plant Physiology, 2011, 156, 330-345.	4.8	135
11	Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine, 2007, 25, 1647-1657.	3.8	120
12	Suppression of Soybean Oleosin Produces Micro-Oil Bodies that Aggregate into Oil Body/ER Complexes. Molecular Plant, 2008, 1, 910-924.	8.3	118
13	Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiologia Plantarum, 2005, 125, 114-126.	5.2	117
14	Additional freeze hardiness in wheat acquired by exposure to â^'3 °C is associated with extensive physiological, morphological, and molecular changes. Journal of Experimental Botany, 2006, 57, 3601-3618.	4.8	115
15	Cosuppression of the α Subunits of β-Conglycinin in Transgenic Soybean Seeds Induces the Formation of Endoplasmic Reticulum–Derived Protein Bodies. Plant Cell, 2001, 13, 1165-1178.	6.6	111
16	Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO Journal, 1987, 6, 3213-3221.	7.8	110
17	Immunogold-localization and synthesis of an oil-body membrane protein in developing soybean seeds. Planta, 1987, 172, 336-345.	3.2	109
18	Endoplasmic Reticulum-Derived Compartments Function in Storage and as Mediators of Vacuolar Remodeling via a New Type of Organelle, Precursor Protease Vesicles: Fig. 1 Plant Physiology, 2000, 123, 1227-1234.	4.8	103

#	Article	IF	CITATIONS
19	Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant Journal, 1997, 11, 783-796.	5.7	95
20	Cellular and Molecular Characterization of a Major Soybean Allergen. International Archives of Allergy and Immunology, 1998, 117, 29-37.	2.1	95
21	Mutational analysis of the IgE-binding epitopes of P34/Cly m Bd 30K. Journal of Allergy and Clinical Immunology, 2000, 105, 378-384.	2.9	91
22	Arabinogalactan-Rich Glycoproteins Are Localized on the Cell Surface and in Intravacuolar Multivesicular Bodies. Plant Physiology, 1992, 98, 264-272.	4.8	90
23	Correct glycosylation, Golgi-processing, and targeting to protein bodies of the vacuolar protein phytohemagglutinin in transgenic tobacco. Planta, 1988, 175, 170-183.	3.2	88
24	Proteome rebalancing in soybean seeds can be exploited to enhance foreign protein accumulation. Plant Biotechnology Journal, 2008, 6, 832-842.	8.3	82
25	The Wheat Peptidyl Prolylcis-trans-Isomerase FKBP77 Is Heat Induced and Developmentally Regulated1. Plant Physiology, 1999, 119, 693-704.	4.8	77
26	Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta, 1995, 195, 611-21.	3.2	72
27	Endoplasmic Reticulum to Vacuole Trafficking of Endoplasmic Reticulum Bodies Provides an Alternate Pathway for Protein Transfer to the Vacuole. Plant Physiology, 2004, 136, 3440-3446.	4.8	67
28	Genetically modified soybeans and food allergies. Journal of Experimental Botany, 2003, 54, 1317-1319.	4.8	66
29	Endoplasmic reticulum bodies: solving the insoluble. Current Opinion in Plant Biology, 2008, 11, 672-679.	7.1	65
30	Report of the Plant Products in Aquafeed Strategic Planning Workshop: An Integrated, Interdisciplinary Research Roadmap for Increasing Utilization of Plant Feedstuffs in Diets for Carnivorous Fish. Reviews in Fisheries Science, 2008, 16, 449-455.	2.1	65
31	Evaluation of Glycine Germplasm for Nulls of the Immunodominant Allergen P34/Gly m Bd 30k. Crop Science, 2006, 46, 1755-1763.	1.8	61
32	Circadian rhythm of chloroplast ultrastructure in Gonyaulax polyedra, concentric organization around a central cluster of ribosomes. Journal of Ultrastructure Research, 1975, 50, 347-354.	1.1	57
33	Accumulation and Subcellular Localization of α-Galactosidase-Hemagglutinin in Developing Soybean Cotyledons. Plant Physiology, 1985, 77, 886-890.	4.8	57
34	Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole. Planta, 1995, 196, 586-96.	3.2	56
35	Transgenic soya bean seeds accumulating βâ€carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnology Journal, 2015, 13, 590-600.	8.3	53
36	Characteristics and Subcellular Localization of Phospholipase D and Phosphatidic Acid Phosphatase in Mung Bean Cotyledons. Plant Physiology, 1980, 66, 1001-1007.	4.8	52

#	Article	IF	CITATIONS
37	Immunocytochemical localization of concanavalin A in developing jack-bean cotyledons. Planta, 1984, 161, 97-104.	3.2	50
38	Bark and Leaf Lectins of Sophora japonica Are Sequestered in Protein-Storage Vacuoles. Plant Physiology, 1988, 86, 1027-1031.	4.8	50
39	Apparent Processing of a Soybean Oil Body Protein Accompanies the Onset of Oil Mobilization. Plant Physiology, 1990, 94, 341-349.	4.8	45
40	Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Science, 2005, 168, 1293-1301.	3.6	45
41	Soybean seed proteome rebalancing. Frontiers in Plant Science, 2014, 5, 437.	3.6	45
42	lsoforms of soybean seed oil body membrane protein 24 kDa oleosin are encoded by closely related cDNAs. Plant Molecular Biology, 1991, 17, 1095-1098.	3.9	44
43	Breeding and characterization of soybean <i>Triple Null;</i> a stack of recessive alleles of Kunitz Trypsin Inhibitor, Soybean Agglutinin, and P34 allergen nulls. Plant Breeding, 2015, 134, 310-315.	1.9	36
44	Transport and posttranslational processing of the vacuolar enzyme ?-mannosidase in jack-bean cotyledons. Planta, 1988, 174, 271-282.	3.2	30
45	Removal of three proteinaceous antinutrients from soybean does not mitigate soybean-induced enteritis in Atlantic salmon (Salmo salar, L). Aquaculture, 2020, 514, 734495.	3.5	27
46	The P34 Syringolide Elicitor Receptor Interacts with a Soybean Photorespiration Enzyme, NADH-Dependent Hydroxypyruvate Reductase. Molecular Plant-Microbe Interactions, 2002, 15, 1213-1218.	2.6	26
47	Soybean Allergenicity and Suppression of the Immunodominant Allergen. Crop Science, 2005, 45, 462-467.	1.8	26
48	Posttranslational Removal of the Carboxyl-terminal KDEL of the Cysteine Protease SH-EP Occurs Prior to Maturation of the Enzyme. Journal of Biological Chemistry, 1999, 274, 11390-11398.	3.4	25
49	The Potential for Engineering Enhanced Functional-Feed Soybeans for Sustainable Aquaculture Feed. Frontiers in Plant Science, 2016, 7, 440.	3.6	25
50	Rapid Degradation and Limited Synthesis of Phospholipids in the Cotyledons of Mung Bean Seedlings. Plant Physiology, 1979, 64, 38-42.	4.8	24
51	Expression patterns of genes encoding endomembrane proteins support a reduced function of the Golgi in wheat endosperm during the onset of storage protein deposition. Journal of Experimental Botany, 2001, 52, 2387-2388.	4.8	24
52	Using Arabidopsis thaliana as a model to study subzero acclimation in small grains. Cryobiology, 2007, 54, 154-163.	0.7	22
53	Reduction of protease inhibitor activity by expression of a mutant Bowman-Birk gene in soybean seed. Plant Molecular Biology, 2007, 64, 397-408.	3.9	22
54	The impact of plant biotechnology on food allergy. Current Opinion in Biotechnology, 2011, 22, 224-230.	6.6	22

#	Article	IF	CITATIONS
55	Association of a Fourâ€Basepair Insertion in the P34 Gene with the Lowâ€Allergen Trait in Soybean. Plant Genome, 2009, 2, .	2.8	20
56	Strategic research, education and policy goals for seed science and crop improvement. Plant Science, 2010, 179, 645-652.	3.6	19
57	Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF). PLoS ONE, 2016, 11, e0157034.	2.5	19
58	Differential distribution of the cognate and heat-stress-induced isoforms of high Mr cis-trans prolyl peptidyl isomerase (FKBP) in the cytoplasm and nucleoplasm. Journal of Experimental Botany, 2003, 54, 2679-2689.	4.8	17
59	CACHONINA ILLDEFINA SP. NOV. (DINOPHYCEAE): CHLOROPLAST TUBULES AND DEGENERATION OF THE PYRENOID1. Journal of Phycology, 1976, 12, 198-205.	2.3	17
60	In vitro Mutated Phytohemagglutinin Genes Expressed in Tobacco Seeds: Role of Glycans in Protein Targeting and Stability. Plant Cell, 1989, 1, 95.	6.6	15
61	The upstream domain of soybean oleosin genes contains regulatory elements similar to those of legume storage proteins. Lipids and Lipid Metabolism, 1997, 1345, 1-4.	2.6	15
62	Correct Post-Translational Modification and Stable Vacuolar Accumulation of Phytohemagglutinin Engineered to Contain Multiple Methionine Residues. FEBS Journal, 1994, 226, 385-391.	0.2	14
63	Soybean-derived recombinant human epidermal growth factor protects against experimental necrotizing enterocolitis. Journal of Pediatric Surgery, 2018, 53, 1203-1207.	1.6	13
64	Scanning electron microscopic observations of the flagellar structure of Gymnodinium splendens (Pyrrophyta, Dinophyceae). Phycologia, 1977, 16, 115-118.	1.4	12
65	Protein storage vacuoles of soybean aleurone cells accumulate a unique glycoprotein. Plant Science, 1995, 107, 57-67.	3.6	10
66	Characterization and functional biology of the soybean aleurone layer. BMC Plant Biology, 2018, 18, 354.	3.6	7
67	Industrial protein production crops: New needs and new opportunities. GM Crops, 2010, 1, 2-7.	1.9	6
68	Protein Storage Bodies and Vacuoles. Plant Cell, 1999, 11, 601.	6.6	5
69	Cosuppression of the a Subunits of b-Conglycinin in Transgenic Soybean Seeds Induces the Formation of Endoplasmic Reticulum-Derived Protein Bodies. Plant Cell, 2001, 13, 1165.	6.6	4
70	Towards Using Biotechnology to Modify Soybean Seeds as Protein Bioreactors. , 2015, , 193-212.		4
71	MORPHOLOGICAL VARIABILITY OF MITOCHONDRIAL FINE STRUCTURE IN CULTURED GONYAULAX POLYEDRA (PYRRHOPHYTA). Journal of Phycology, 1979, 15, 333-336.	2.3	4
72	Mitigation of Soybean Allergy by Development of Low Allergen Content Seeds. ACS Symposium Series, 2008, , 431-445.	0.5	3

#	Article	IF	CITATIONS
73	The Purification, Properties, and Localization of an Abundant Legume Seed Lectin Cross-Reactive Material from <i>Spartium junceum</i> . Plant Physiology, 1991, 96, 98-103.	4.8	2
74	PLANT SEEDS: AN EXCITING MODEL SYSTEM FOR DISSECTING MOLECULAR AND CELLULAR REGULATION OF METABOLIC PROCESSES. Israel Journal of Plant Sciences, 2000, 48, 181-187.	0.5	2
75	Allergenic Reponses to Legume Proteins. , 2004, , .		1
76	Posttranslational removal of the carboxyl-terminal KDEL of the cysteine protease SH-EP occurs prior to maturation of the enzyme Journal of Biological Chemistry, 1999, 274, 25188.	3.4	1
77	Soybean Food and Feed Allergy. Agronomy, 0, , 271-288.	0.2	Ο
78	The Path to Economically Viable Foreign Protein Co-Products of Oilseeds. , 2012, , 227-238.		0