Theunis C Goosen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106588/publications.pdf

Version: 2024-02-01

172457 161849 3,376 55 29 54 citations h-index g-index papers 55 55 55 3457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of <scp>CYP3A</scp> induction by <scp>PF</scp> â€05251749 in early clinical development: comparison of linear slope physiologically based pharmacokinetic prediction and biomarker response. Clinical and Translational Science, 2022, 15, 2184-2194.	3.1	2
2	Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping., 2021, 218, 107689.		28
3	Considerations from the Innovation and Quality Induction Working Group in Response to Drug-Drug Interaction Guidance from Regulatory Agencies: Guidelines on Model Fitting and Recommendations on Time Course for In Vitro Cytochrome P450 Induction Studies Including Impact on Drug Interaction Risk Assessment. Drug Metabolism and Disposition. 2021. 49. 94-110.	3.3	14
4	Physiologicallyâ€Based Pharmacokinetic Modeling of the Drug–Drug Interaction of the UGT Substrate Ertugliflozin Following Coâ€Administration with the UGT Inhibitor Mefenamic Acid. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 127-136.	2.5	9
5	Cytochrome P450 3A Time-Dependent Inhibition Assays Are Too Sensitive for Identification of Drugs Causing Clinically Significant Drug-Drug Interactions: A Comparison of Human Liver Microsomes and Hepatocytes and Definition of Boundaries for Inactivation Rate Constants. Drug Metabolism and Disposition, 2021, 49, 442-450.	3.3	15
6	Static and Dynamic Projections of Drug-Drug Interactions Caused by Cytochrome P450 3A Time-Dependent Inhibitors Measured in Human Liver Microsomes and Hepatocytes. Drug Metabolism and Disposition, 2021, 49, 947-960.	3.3	17
7	In Vitro Characterization of Ertugliflozin Metabolism by UDP-Glucuronosyltransferase and Cytochrome P450 Enzymes. Drug Metabolism and Disposition, 2020, 48, 1350-1363.	3.3	12
8	Physiologically Based Pharmacokinetic Modeling Suggests Limited Drugâ€Drug Interaction for Fesoterodine When Coadministered With Mirabegron. Journal of Clinical Pharmacology, 2019, 59, 1505-1518.	2.0	4
9	Biosynthesis and Identification of Metabolites of Maraviroc and Their Use in Experiments to Delineate the Relative Contributions of Cytochrome P4503A4 versus 3A5. Drug Metabolism and Disposition, 2018, 46, 493-502.	3.3	8
10	Establishing Transcriptional Signatures to Differentiate PXR-, CAR-, and AhR-Mediated Regulation of Drug Metabolism and Transport Genes in Cryopreserved Human Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 262-271.	2.5	46
11	Data Generated by Quantitative Liquid Chromatography-Mass Spectrometry Proteomics Are Only the Start and Not the Endpoint: Optimization of Quantitative Concatemer-Based Measurement of Hepatic Uridine-5′-Diphosphate–Glucuronosyltransferase Enzymes with Reference to Catalytic Activity. Drug Metabolism and Disposition, 2018, 46, 805-812.	3.3	19
12	Induction of human cytochrome P450 3A4 by the irreversible myeloperoxidase inactivator PF-06282999 is mediated by the pregnane X receptor. Xenobiotica, 2018, 48, 647-655.	1.1	8
13	6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1 <i>H</i> -Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1, Relative to <i>\hat{l}^2</i> -Estradiol. Drug Metabolism and Disposition, 2018, 46, 1836-1846.	3.3	2
14	Considerations from the Innovation and Quality Induction Working Group in Response to Drug-Drug Interaction Guidances from Regulatory Agencies: Focus on CYP3A4 mRNA In Vitro Response Thresholds, Variability, and Clinical Relevance. Drug Metabolism and Disposition, 2018, 46, 1285-1303.	3.3	39
15	Quantitative Characterization of Major Hepatic UDP-Glucuronosyltransferase Enzymes in Human Liver Microsomes: Comparison of Two Proteomic Methods and Correlation with Catalytic Activity. Drug Metabolism and Disposition, 2017, 45, 1102-1112.	3.3	40
16	Discovery and Optimization of Imidazopyridine-Based Inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2). Journal of Medicinal Chemistry, 2015, 58, 7173-7185.	6.4	61
17	In Vitro Kinetic Characterization of Axitinib Metabolism. Drug Metabolism and Disposition, 2015, 44, 102-114.	3.3	33
18	Relative Contributions of Cytochrome CYP3A4 Versus CYP3A5 for CYP3A-Cleared Drugs Assessed In Vitro Using a CYP3A4-Selective Inactivator (CYP3cide). Drug Metabolism and Disposition, 2014, 42, 1163-1173.	3.3	79

#	Article	IF	CITATIONS
19	Undesired versus designed enzymatic cleavage of linkers for liver targeting. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1144-1147.	2.2	1
20	Metabolites in Safety Testing Assessment in Early Clinical Development: A Case Study with a Glucokinase Activator. Drug Metabolism and Disposition, 2014, 42, 1926-1939.	3.3	18
21	Mechanism-Based Pharmacokinetic Modeling to Evaluate Transporter-Enzyme Interplay in Drug Interactions and Pharmacogenetics of Glyburide. AAPS Journal, 2014, 16, 736-748.	4.4	47
22	Response to the Comment on the Article "Physiologically Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug Interactions― Pharmaceutical Research, 2013, 30, 1469-1470.	3.5	3
23	Mechanistic Modeling to Predict the Transporter- and Enzyme-Mediated Drug-Drug Interactions of Repaglinide. Pharmaceutical Research, 2013, 30, 1188-1199.	3.5	96
24	Targeted Quantitative Proteomics for the Analysis of 14 UGT1As and -2Bs in Human Liver Using NanoUPLC–MS/MS with Selected Reaction Monitoring. Journal of Proteome Research, 2013, 12, 4402-4413.	3.7	111
25	Identification of potent, selective, CNS-targeted inverse agonists of the ghrelin receptor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5410-5414.	2.2	26
26	A Perspective on the Prediction of Drug Pharmacokinetics and Disposition in Drug Research and Development. Drug Metabolism and Disposition, 2013, 41, 1975-1993.	3.3	89
27	Model-based approaches to predict drug–drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 459-472.	3.3	63
28	Elucidation of the biochemical basis for a clinical drug–drug interaction between atorvastatin and 5-(<i>N</i> -(4-(4-ethylbenzyl)thio)phenyl)sulfamoyl)-2-methyl benzoic acid (CP-778 875), a subtype selective agonist of the peroxisome proliferator-activated receptor alpha. Xenobiotica, 2013, 43, 963-972.	1.1	8
29	Reactive Metabolite Trapping Studies on Imidazo- and 2-Methylimidazo[2,1- <i>b</i>) Ithiazole-Based Inverse Agonists of the Ghrelin Receptor. Drug Metabolism and Disposition, 2013, 41, 1375-1388.	3.3	7
30	Targeted Precise Quantification of 12 Human Recombinant Uridine-Diphosphate Glucuronosyl Transferase 1A and 2B Isoforms Using Nano-Ultra-High-Performance Liquid Chromatography/Tandem Mass Spectrometry with Selected Reaction Monitoring. Drug Metabolism and Disposition, 2013, 41, 2076-2080.	3.3	64
31	Quantitative Prediction of Repaglinide-Rifampicin Complex Drug Interactions Using Dynamic and Static Mechanistic Models: Delineating Differential CYP3A4 Induction and OATP1B1 Inhibition Potential of Rifampicin. Drug Metabolism and Disposition, 2013, 41, 966-974.	3.3	55
32	Investigating the Enteroenteric Recirculation of Apixaban, a Factor Xa Inhibitor: Administration of Activated Charcoal to Bile Duct-Cannulated Rats and Dogs Receiving an Intravenous Dose and Use of Drug Transporter Knockout Rats. Drug Metabolism and Disposition, 2013, 41, 906-915.	3.3	49
33	Intestinal Targeting of Drugs: Rational Design Approaches and Challenges. Current Topics in Medicinal Chemistry, 2013, 13, 776-802.	2.1	49
34	Physicochemical Property Space of Hepatobiliary Transport and Computational Models for Predicting Rat Biliary Excretion. Drug Metabolism and Disposition, 2012, 40, 1527-1537.	3.3	66
35	Optimized Assays for Human UDP-Glucuronosyltransferase (UGT) Activities: Altered Alamethicin Concentration and Utility to Screen for UGT Inhibitors. Drug Metabolism and Disposition, 2012, 40, 1051-1065.	3.3	135
36	Physiologically Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug Interactions. Pharmaceutical Research, 2012, 29, 2860-2873.	3.5	122

#	Article	IF	CITATIONS
37	Insights into the Novel Hydrolytic Mechanism of a Diethyl 2-Phenyl-2-(2-arylacetoxy)methyl Malonate Ester-Based Microsomal Triglyceride Transfer Protein (MTP) Inhibitor. Chemical Research in Toxicology, 2012, 25, 2138-2152.	3.3	4
38	Selective Mechanism-Based Inactivation of CYP3A4 by CYP3cide (PF-04981517) and Its Utility as an In Vitro Tool for Delineating the Relative Roles of CYP3A4 versus CYP3A5 in the Metabolism of Drugs. Drug Metabolism and Disposition, 2012, 40, 1686-1697.	3 . 3	73
39	pH-Sensitive Interaction of HMG-CoA Reductase Inhibitors (Statins) with Organic Anion Transporting Polypeptide 2B1. Molecular Pharmaceutics, 2011, 8, 1303-1313.	4.6	97
40	Discovery of novel hepatoselective HMG-CoA reductase inhibitors for treating hypercholesterolemia: A bench-to-bedside case study on tissue selective drug distribution. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2725-2731.	2.2	27
41	In Vitro Assessment of Metabolic Drug-Drug Interaction Potential of Apixaban through Cytochrome P450 Phenotyping, Inhibition, and Induction Studies. Drug Metabolism and Disposition, 2010, 38, 448-458.	3.3	219
42	Atorvastatin Glucuronidation Is Minimally and Nonselectively Inhibited by the Fibrates Gemfibrozil, Fenofibrate, and Fenofibric Acid. Drug Metabolism and Disposition, 2007, 35, 1315-1324.	3.3	50
43	Limited influence of UGT1A1*28 and no effect of UGT2B7*2 polymorphisms on UGT1A1 or UGT2B7 activities and protein expression in human liver microsomes. British Journal of Clinical Pharmacology, 2007, 64, 458-468.	2.4	51
44	Kinetics of Acetaminophen Glucuronidation by UDP-Glucuronosyltransferases 1A1, 1A6, 1A9 and 2B15. Potential Implications in Acetaminophenâ°Induced Hepatotoxicity. Chemical Research in Toxicology, 2006, 19, 701-709.	3.3	109
45	Drug-Drug Interaction After Single Oral Doses of the Furanocoumarin Methoxsalen and Cyclosporine. Journal of Clinical Pharmacology, 2006, 46, 768-775.	2.0	8
46	UDP-GLUCURONOSYLTRANSFERASE 2B7 IS THE MAJOR ENZYME RESPONSIBLE FOR GEMCABENE GLUCURONIDATION IN HUMAN LIVER MICROSOMES. Drug Metabolism and Disposition, 2005, 33, 1349-1354.	3.3	25
47	SILYBIN INACTIVATES CYTOCHROMES P450 3A4 AND 2C9 AND INHIBITS MAJOR HEPATIC GLUCURONOSYLTRANSFERASES. Drug Metabolism and Disposition, 2004, 32, 587-594.	3.3	180
48	DRUG-DRUG INTERACTIONS FOR UDP-GLUCURONOSYLTRANSFERASE SUBSTRATES: A PHARMACOKINETIC EXPLANATION FOR TYPICALLY OBSERVED LOW EXPOSURE (AUCI/AUC) RATIOS. Drug Metabolism and Disposition, 2004, 32, 1201-1208.	3.3	870
49	Bergamottin contribution to the grapefruit juice?felodipine interaction and disposition in humans. Clinical Pharmacology and Therapeutics, 2004, 76, 607-617.	4.7	75
50	Effect of oral contraceptives on the transport of chlorpromazine across the CACO-2 intestinal epithelial cell line. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 159-165.	4.3	10
51	Physicochemical characterization and solubility analysis of thalidomide and its N-alkyl analogs. Pharmaceutical Research, 2002, 19, 13-19.	3.5	24
52	Percutaneous delivery of thalidomide and its N-alkyl analogs. Pharmaceutical Research, 2002, 19, 434-439.	3.5	13
53	Chemical stabilities and biological activities of thalidomide and its N-alkyl analogs. Pharmaceutical Research, 2002, 19, 1232-1235.	3.5	3
54	Differential Effects of Naturally Occurring Isothiocyanates on the Activities of Cytochrome P450 2E1 and the Mutant P450 2E1 T303A. Archives of Biochemistry and Biophysics, 2001, 391, 99-110.	3.0	46

THEUNIS C GOOSEN

#	Article	IF	CITATIONS
55	Inactivation of Cytochrome P450 2B1 by Benzyl Isothiocyanate, a Chemopreventative Agent from Cruciferous Vegetables. Chemical Research in Toxicology, 2000, 13, 1349-1359.	3.3	47