
Lawrence Labrecque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/210454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Losing the dogmatic view of cerebral autoregulation. Physiological Reports, 2021, 9, e14982.	1.7	73
2	Dynamic cerebral autoregulation is attenuated in young fit women. Physiological Reports, 2019, 7, e13984.	1.7	72
3	Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness. Physiological Reports, 2017, 5, e13486.	1.7	60
4	Effects of age and sex on middle cerebral artery blood velocity and flow pulsatility index across the adult lifespan. Journal of Applied Physiology, 2021, 130, 1675-1683.	2.5	44
5	Six weeks of highâ€intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men. Physiological Reports, 2019, 7, e14185.	1.7	35
6	Comparable blood velocity changes in middle and posterior cerebral arteries during and following acute highâ€intensity exercise in young fit women. Physiological Reports, 2020, 8, e14430.	1.7	25
7	Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. Journal of Applied Physiology, 2021, 131, 927-936.	2.5	18
8	Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation. Experimental Physiology, 2019, 104, 1780-1789.	2.0	16
9	Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. Journal of Applied Physiology, 2021, 130, 1724-1735.	2.5	16
10	Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. Journal of Applied Physiology, 2022, 132, 154-166.	2.5	16
11	Cardiac remodeling after six weeks of high-intensity interval training to exhaustion in endurance-trained men. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H685-H694.	3.2	14
12	What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates?. Physiological Measurement, 2021, 42, 044002.	2.1	14
13	Impact of type 2 diabetes on cardiorespiratory function and exercise performance. Physiological Reports, 2017, 5, e13145.	1.7	12
14	Letter to the Editor: On the need of considering cardiorespiratory fitness when examining the influence of sex on dynamic cerebral autoregulation. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1229-H1229.	3.2	9
15	Directional sensitivity of the cerebral pressure–flow relationship in young healthy individuals trained in endurance and resistance exercise. Experimental Physiology, 2022, 107, 299-311.	2.0	9
16	Sex-specific effects of cardiorespiratory fitness on age-related differences in cerebral hemodynamics. Journal of Applied Physiology, 2022, 132, 1310-1317.	2.5	8
17	Point/counterpoint: We should take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 2351-2353.	4.3	8
18	Prenatal exercise and cardiovascular health (PEACH) study: impact of acute and chronic exercise on cerebrovascular hemodynamics and dynamic cerebral autoregulation. Journal of Applied Physiology, 2022, 132, 247-260.	2.5	7

#	Article	IF	CITATIONS
19	Influence of highâ€intensity interval training to exhaustion on the directional sensitivity of the cerebral pressureâ€flow relationship in young enduranceâ€trained men. Physiological Reports, 2022, 10, .	1.7	2