
## **Diederick Jacques**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2104363/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 2015, 19, 445-478.                                                                                                   | 2.4  | 566       |
| 2  | Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.                                                                                                       | 2.2  | 445       |
| 3  | Trainingâ€Image Based Geostatistical Inversion Using a Spatial Generative Adversarial Neural Network.<br>Water Resources Research, 2018, 54, 381-406.                                                             | 4.2  | 232       |
| 4  | Efficient posterior exploration of a highâ€dimensional groundwater model from twoâ€stage Markov<br>chain Monte Carlo simulation and polynomial chaos expansion. Water Resources Research, 2013, 49,<br>2664-2682. | 4.2  | 201       |
| 5  | Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network. Advances in Water Resources, 2017, 110, 387-405.                                          | 3.8  | 155       |
| 6  | SPATIAL VARIABILITY OF HYDRAULIC PROPERTIES IN A MULTI-LAYERED SOIL PROFILE. Soil Science, 1996, 161, 167-181.                                                                                                    | 0.9  | 142       |
| 7  | Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches. Cement and Concrete Research, 2016, 90, 52-72.                          | 11.0 | 123       |
| 8  | Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO 2 pressure conditions. Construction and Building Materials, 2015, 82, 376-390.             | 7.2  | 105       |
| 9  | TEMPORAL PERSISTENCE IN VERTICAL DISTRIBUTIONS OF SOIL MOISTURE CONTENTS. Soil Science Society of America Journal, 2005, 69, 347-352.                                                                             | 2.2  | 99        |
| 10 | Investigation of the changes in microstructure and transport properties of leached cement pastes accounting for mix composition. Cement and Concrete Research, 2016, 79, 217-234.                                 | 11.0 | 96        |
| 11 | Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma, 2008, 145, 449-461.                                                          | 5.1  | 95        |
| 12 | Sensitivity of soil parameters in unsaturated zone modelling and the relation between effective,<br>laboratory andin situ estimates. Hydrological Processes, 2005, 19, 1611-1633.                                 | 2.6  | 94        |
| 13 | Modelling Water Flow and Solute Transport in Heterogeneous Soils: A Review of Recent Approaches.<br>Biosystems Engineering, 1998, 70, 231-256.                                                                    | 0.4  | 93        |
| 14 | Indirect estimation of near-saturated hydraulic conductivity from readily available soil information.<br>Geoderma, 2002, 108, 1-17.                                                                               | 5.1  | 91        |
| 15 | Calibration of Richards' and convection–dispersion equations to field-scale water flow and solute transport under rainfall conditions. Journal of Hydrology, 2002, 259, 15-31.                                    | 5.4  | 91        |
| 16 | Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 2018, 10, 1237-1263.                                                                                          | 9.9  | 85        |
| 17 | Including prior information in the estimation of effective soil parameters in unsaturated zone modelling. Journal of Hydrology, 2004, 294, 251-269.                                                               | 5.4  | 79        |
| 18 | Modelling the carbonation of cement pastes under a CO2 pressure gradient considering both diffusive and convective transport. Construction and Building Materials, 2016, 114, 333-351.                            | 7.2  | 79        |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Modelling chemical degradation of concrete during leaching with rain and soil water types. Cement and Concrete Research, 2010, 40, 1306-1313.                                                                | 11.0 | 76        |
| 20 | Field‣cale Water Flow Simulations Using Ensembles of Pedotransfer Functions for Soil Water<br>Retention. Vadose Zone Journal, 2006, 5, 234-247.                                                              | 2.2  | 71        |
| 21 | MULTICOMPONENT GEOCHEMICAL TRANSPORT MODELING USING HYDRUSâ€ID AND HP1 <sup>1</sup> .<br>Journal of the American Water Resources Association, 2006, 42, 1537-1547.                                           | 2.4  | 70        |
| 22 | Determination of water permeability of cementitious materials using a controlled constant flow method. Construction and Building Materials, 2013, 47, 1488-1496.                                             | 7.2  | 69        |
| 23 | Overview of inert tracer experiments in key belgian soil types: Relation between transport and soil morphological and hydraulic properties. Water Resources Research, 2001, 37, 2873-2888.                   | 4.2  | 65        |
| 24 | Multimodel Simulation of Water Flow in a Field Soil Using Pedotransfer Functions. Vadose Zone<br>Journal, 2009, 8, 1-10.                                                                                     | 2.2  | 65        |
| 25 | Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Computational Geosciences, 2015, 19, 655-671.                      | 2.4  | 60        |
| 26 | Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. Journal of Contaminant Hydrology, 2006, 88, 197-218. | 3.3  | 57        |
| 27 | Modeling Coupled Hydrologic and Chemical Processes: Longâ€Term Uranium Transport following<br>Phosphorus Fertilization. Vadose Zone Journal, 2008, 7, 698-711.                                               | 2.2  | 57        |
| 28 | Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching. Construction and Building Materials, 2016, 115, 179-192.                       | 7.2  | 57        |
| 29 | A stochastic approach to simulate water flow in a macroporous soil. Geoderma, 1996, 70, 299-324.                                                                                                             | 5.1  | 50        |
| 30 | Information content and complexity of simulated soil water fluxes. Geoderma, 2006, 134, 253-266.                                                                                                             | 5.1  | 49        |
| 31 | Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D. Hydrology and Earth System Sciences, 2012, 16, 2485-2497.                                                                        | 4.9  | 47        |
| 32 | Verification and intercomparison of reactive transport codes to describe root-uptake. Plant and Soil, 2006, 285, 305-321.                                                                                    | 3.7  | 45        |
| 33 | Effective diffusivity of cement pastes from virtual microstructures: Role of gel porosity and capillary pore percolation. Construction and Building Materials, 2018, 165, 833-845.                           | 7.2  | 44        |
| 34 | Characterisation of the field-saturated hydraulic conductivity on a hillslope: in situ single ring pressure infiltrometer measurements. Journal of Hydrology, 2002, 263, 217-229.                            | 5.4  | 43        |
| 35 | Benchmarks for multicomponent reactive transport across a cement/clay interface. Computational<br>Geosciences, 2015, 19, 635-653.                                                                            | 2.4  | 43        |
| 36 | Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile. Journal of Hydrology, 2002, 264, 185-200.                                  | 5.4  | 41        |

Diederick Jacques

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Gradient-based deterministic inversion of geophysical data with generative adversarial networks: Is it feasible?. Computers and Geosciences, 2019, 133, 104333.                                                  | 4.2  | 41        |
| 38 | Analysis of steady state chloride transport through two heterogeneous field soils. Water Resources<br>Research, 1998, 34, 2539-2550.                                                                             | 4.2  | 40        |
| 39 | Comparison of three hydraulic property measurement methods. Journal of Hydrology, 1997, 199, 295-318.                                                                                                            | 5.4  | 39        |
| 40 | Probabilistic inference of multiâ€≺scp>Gaussian fields from indirect hydrological data using circulant embedding and dimensionality reduction. Water Resources Research, 2015, 51, 4224-4243.                    | 4.2  | 39        |
| 41 | Retention of Cs in Boom Clay: Comparison of data from batch sorption tests and diffusion experiments on intact clay cores. Physics and Chemistry of the Earth, 2008, 33, S149-S155.                              | 2.9  | 38        |
| 42 | A versatile pore-scale multicomponent reactive transport approach based on lattice Boltzmann<br>method: Application to portlandite dissolution. Physics and Chemistry of the Earth, 2014, 70-71, 127-137.        | 2.9  | 33        |
| 43 | Spatial variability of atrazine sorption parameters and other soil properties in a podzoluvisol. Journal of Contaminant Hydrology, 1999, 36, 31-52.                                                              | 3.3  | 32        |
| 44 | A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environmental Science and Pollution Research, 2014, 21, 12279-12293.                               | 5.3  | 32        |
| 45 | A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching. Construction and Building Materials, 2018, 166, 158-170. | 7.2  | 32        |
| 46 | Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and<br>Ionic Strength in Soil. Environmental Science & Technology, 2017, 51, 2096-2104.                           | 10.0 | 31        |
| 47 | Impact of manure-related DOM on sulfonamide transport in arable soils. Journal of Contaminant<br>Hydrology, 2016, 192, 118-128.                                                                                  | 3.3  | 28        |
| 48 | Merging parallel tempering with sequential geostatistical resampling for improved posterior<br>exploration of high-dimensional subsurface categorical fields. Advances in Water Resources, 2016, 90,<br>57-69.   | 3.8  | 28        |
| 49 | Comparison of alternative methods for deriving hydraulic properties and scaling factors from single-disc tension infiltrometer measurements. Water Resources Research, 2002, 38, 25-1-25-14.                     | 4.2  | 27        |
| 50 | INVERSE ESTIMATION OF SOIL HYDRAULIC AND SOLUTE TRANSPORT PARAMETERS FROM TRANSIENT FIELD EXPERIMENTS: HETEROGENEOUS SOIL. Transactions of the American Society of Agricultural Engineers, 2003, 46, 1097.       | 0.9  | 26        |
| 51 | Benchmark problems for reactive transport modeling of the generation and attenuation of acid rock drainage. Computational Geosciences, 2015, 19, 599-611.                                                        | 2.4  | 26        |
| 52 | Data Assimilation with Soil Water Content Sensors and Pedotransfer Functions in Soil Water Flow<br>Modeling. Soil Science Society of America Journal, 2012, 76, 829-844.                                         | 2.2  | 25        |
| 53 | Nested multiresolution hierarchical simulated annealing algorithm for porous media reconstruction. Physical Review E, 2019, 100, 053316.                                                                         | 2.1  | 25        |
| 54 | Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms. Cement and<br>Concrete Research, 2010, 40, 1298-1305.                                                                      | 11.0 | 24        |

Diederick Jacques

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Emulation of CPU-demanding reactive transport models: a comparison of Gaussian processes, polynomial chaos expansion, and deep neural networks. Computational Geosciences, 2019, 23, 1193-1215.                   | 2.4  | 24        |
| 56 | Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW. Journal of Hydrology and Hydromechanics, 2018, 66, 246-256.                                | 2.0  | 23        |
| 57 | Choice of Pedotransfer Functions Matters when Simulating Soil Water Balance Fluxes. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002404.                                                       | 3.8  | 22        |
| 58 | The HPx software for multicomponent reactive transport during variably-saturated flow: Recent developments and applications. Journal of Hydrology and Hydromechanics, 2018, 66, 211-226.                          | 2.0  | 22        |
| 59 | Insights and issues on the correlation between diffusion and microstructure of saturated cement pastes. Cement and Concrete Composites, 2019, 96, 106-117.                                                        | 10.7 | 21        |
| 60 | Determining hydraulic properties of concrete and mortar by inverse modelling. Materials Research<br>Society Symposia Proceedings, 2012, 1475, 367.                                                                | 0.1  | 20        |
| 61 | Inverse optimization of hydraulic, solute transport, and cation exchange parameters using HP1 and UCODE to simulate cation exchange. Journal of Contaminant Hydrology, 2012, 142-143, 109-125.                    | 3.3  | 20        |
| 62 | A reactive transport model for mercury fate in contaminated soil—sensitivity analysis. Environmental<br>Science and Pollution Research, 2015, 22, 16830-16842.                                                    | 5.3  | 19        |
| 63 | Deriving Transport Parameters from Transient Flow Leaching Experiments by Approximate Steady‧tate<br>Flow Convection–Dispersion Models. Soil Science Society of America Journal, 2000, 64, 1317-1327.             | 2.2  | 17        |
| 64 | Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation. Journal of Hydrology, 2017, 549, 114-124.                                                | 5.4  | 17        |
| 65 | A new concept for pore-scale precipitation-dissolution modelling in a lattice Boltzmann framework –<br>Application to portlandite carbonation. Applied Geochemistry, 2020, 123, 104786.                           | 3.0  | 17        |
| 66 | Study of time dependency of factors affecting the spatial distribution of soil water content in a field-plot. Physics and Chemistry of the Earth, 2001, 26, 629-634.                                              | 0.3  | 16        |
| 67 | Inverse modelling with a genetic algorithm to derive hydraulic properties of a multi-layered forest soil. Soil Research, 2013, 51, 372.                                                                           | 1.1  | 16        |
| 68 | Coupling Flow, Heat, and Reactive Transport Modeling to Reproduce <i>In Situ</i> Redox Potential<br>Evolution: Application to an Infiltration Pond. Environmental Science & Technology, 2020, 54,<br>12092-12101. | 10.0 | 15        |
| 69 | Selected HYDRUS modules for modeling subsurface flow and contaminant transport as influenced by biological processes at various scales. Biologia (Poland), 2009, 64, 465-469.                                     | 1.5  | 14        |
| 70 | Conceptual model analysis of interaction at a concrete–Boom Clay interface. Physics and Chemistry of the Earth, 2014, 70-71, 150-159.                                                                             | 2.9  | 14        |
| 71 | Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using<br>HYDRUS. Water (Switzerland), 2017, 9, 385.                                                                      | 2.7  | 14        |
| 72 | Determination of 137Cs contamination depth distribution in building structures using geostatistical modeling of ISOCS measurements. Applied Radiation and Isotopes, 2013, 79, 25-36.                              | 1.5  | 13        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Decalcification of cracked cement structures. Computational Geosciences, 2015, 19, 673-693.                                                                                                                                  | 2.4 | 13        |
| 74 | Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms.<br>Biogeosciences, 2014, 11, 7179-7192.                                                                                              | 3.3 | 12        |
| 75 | A cement degradation model for evaluating the evolution of retardation factors in radionuclide leaching models. Applied Geochemistry, 2014, 49, 143-158.                                                                     | 3.0 | 12        |
| 76 | Coupled reactive transport model study of pore size effects on solubility during cement-bicarbonate water interaction. Chemical Geology, 2017, 466, 588-599.                                                                 | 3.3 | 12        |
| 77 | Numerical and Experimental Investigations of Cesium and Strontium Sorption and Transport in Agricultural Soils. Vadose Zone Journal, 2018, 17, 1-14.                                                                         | 2.2 | 11        |
| 78 | Shale weathering: A lysimeter and modelling study for flow, transport, gas diffusion and reactivity assessment in the critical zone. Journal of Hydrology, 2020, 587, 124925.                                                | 5.4 | 11        |
| 79 | Effects of Lime and Concrete Waste on Vadose Zone Carbon Cycling. Vadose Zone Journal, 2014, 13, 1-11.                                                                                                                       | 2.2 | 10        |
| 80 | Transport of dissolved organic matter in Boom Clay: Size effects. Journal of Contaminant Hydrology,<br>2018, 208, 27-34.                                                                                                     | 3.3 | 10        |
| 81 | Comparison of three stream tube models predicting field-scale solute transport. Hydrology and Earth<br>System Sciences, 1997, 1, 873-893.                                                                                    | 4.9 | 9         |
| 82 | Leaching of Contaminants to Groundwater. , 2011, , 787-850.                                                                                                                                                                  |     | 9         |
| 83 | Influence of fracture networks on radionuclide transport from solidified waste forms. Nuclear<br>Engineering and Design, 2014, 270, 162-175.                                                                                 | 1.7 | 9         |
| 84 | Quantification of leaching kinetics in OPC mortars via a mesoscale model. Construction and Building<br>Materials, 2018, 180, 614-628.                                                                                        | 7.2 | 9         |
| 85 | Comparison between field measurements and numerical simulation of steady-state solute transport in a heterogeneous soil profile. Hydrology and Earth System Sciences, 1997, 1, 853-871.                                      | 4.9 | 8         |
| 86 | Effect of spatial variation of textural layers on regional field water balance. Water Resources<br>Research, 2001, 37, 1209-1219.                                                                                            | 4.2 | 8         |
| 87 | High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals. Journal of Hydrology, 2014, 519, 2121-2135.                                                                                     | 5.4 | 8         |
| 88 | A benchmark for multi-rate surface complexation and 1D dual-domain multi-component reactive transport of U(VI). Computational Geosciences, 2015, 19, 585-597.                                                                | 2.4 | 8         |
| 89 | Development of a Fully Coupled Biogeochemical Reactive Transport Model to Simulate Microbial<br>Oxidation of Organic Carbon and Pyrite Under Nitrateâ€Reducing Conditions. Water Resources<br>Research, 2018, 54, 9264-9286. | 4.2 | 8         |
| 90 | Approaching geoscientific inverse problems with vector-to-image domain transfer networks.<br>Advances in Water Resources, 2021, 152, 103917.                                                                                 | 3.8 | 8         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Towards a scientific-based assessment of long-term durability and performance of cementitious<br>materials for radioactive waste conditioning and disposal. Journal of Nuclear Materials, 2021, 557,<br>153201. | 2.7 | 8         |
| 92  | 6.6 Solute Transport During Variably Saturated Flow-Inverse Methods. Soil Science Society of America<br>Book Series, 0, , 1435-1449.                                                                            | 0.3 | 7         |
| 93  | A benchmark for soil organic matter degradation under variably saturated flow conditions.<br>Computational Geosciences, 2021, 25, 1359-1377.                                                                    | 2.4 | 7         |
| 94  | Scale-dependent parameterization of groundwater–surface water interactions in a regional hydrogeological model. Journal of Hydrology, 2019, 576, 494-507.                                                       | 5.4 | 6         |
| 95  | Speeding Up Reactive Transport Simulations in Cement Systems by Surrogate Geochemical Modeling:<br>Deep Neural Networks and k-Nearest Neighbors. Transport in Porous Media, 2022, 143, 433-462.                 | 2.6 | 6         |
| 96  | Synergistic Effects between Carbonation and Cracks in the Hardened Cement Paste. Sustainability, 2022, 14, 8572.                                                                                                | 3.2 | 6         |
| 97  | Modelling uranium leaching from agricultural soils to groundwater as a criterion for comparison with complementary safety indicators. Materials Research Society Symposia Proceedings, 2006, 932, 1.            | 0.1 | 5         |
| 98  | Modelling of cation concentrations in the outflow of NaNO3 percolation experiments through Boom Clay cores. Physics and Chemistry of the Earth, 2011, 36, 1693-1699.                                            | 2.9 | 5         |
| 99  | Numerically accelerated pore-scale equilibrium dissolution. Journal of Contaminant Hydrology, 2019, 220, 119-127.                                                                                               | 3.3 | 5         |
| 100 | PHREEQC Modelling of Leaching of Major Elements and Heavy Metals From Cementitious Waste Forms.<br>Materials Research Society Symposia Proceedings, 2008, 1107, 1.                                              | 0.1 | 4         |
| 101 | Concrete in Engineered Barriers for Radioactive Waste Disposal Facilities: Phenomenological Study and Assessment of Long Term Performance. , 2013, , .                                                          |     | 4         |
| 102 | Effect of Limestone Fillers on Ca-Leaching and Carbonation of Cement Pastes. Key Engineering<br>Materials, 0, 711, 269-276.                                                                                     | 0.4 | 4         |
| 103 | A New Radionuclide Sorption Database for Benchmark Cement Accounting for Geochemical Evolution of Cement. , 2013, , 103-112.                                                                                    |     | 4         |
| 104 | Multicomponent transport model for variably-saturated porous media: application to the transport of heavy metals in soils. Developments in Water Science, 2002, 47, 555-562.                                    | 0.1 | 3         |
| 105 | Coupling Time-Dependent Sorption Values of Degrading Concrete With a Radionuclide Migration Model. , 2009, , .                                                                                                  |     | 3         |
| 106 | Suction cup systemâ€dependent variable boundary condition: Transient water flow and multicomponent solute transport. Vadose Zone Journal, 2020, 19, e20030.                                                     | 2.2 | 3         |
| 107 | Analysis of Solute Redistribution in Heterogeneous Soil. Quantitative Geology and Geostatistics, 1997, , 271-282.                                                                                               | 0.1 | 3         |
| 108 | Modelling Multi-Phase Flow Phenomena in Concrete Barriers Used for Geological Disposal of                                                                                                                       |     | 3         |

Radioactive Waste. , 2007, , .

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Alteration in molecular structure of alkali activated slag with various water to binder ratios under accelerated carbonation. Scientific Reports, 2022, 12, 5524.                                                                    | 3.3 | 3         |
| 110 | Evolution of Sorption Properties in Large-Scale Concrete Structures Accounting for Long-Term Physical-Chemical Concrete Degradation. , 2011, , .                                                                                     |     | 2         |
| 111 | The Use of Multicomponent Solute Transport Models in Environmental Analyses. , 2014, , 377-402.                                                                                                                                      |     | 2         |
| 112 | Modelling 226Ra, 222Rn, and 210Pb Migration in a Proposed Surface Repository of Very Low-Level Long-Lived Radioactive Waste. , 2003, , 823.                                                                                          |     | 1         |
| 113 | Quantifying Conservatism of Performance Assessment Calculations by Sorption Model Reduction:<br>Case Study on Near Field Cs Migration in Callovo-Oxfordian Clay. Materials Research Society Symposia<br>Proceedings, 2009, 1193, 22. | 0.1 | 1         |
| 114 | Current Concerns on Durability of Concrete Used in Nuclear Power Plants and Radioactive Waste Repositories. Lecture Notes in Civil Engineering, 2018, , 1107-1121.                                                                   | 0.4 | 1         |
| 115 | Diffusion models for the early-stage SON68 glass dissolution in a hyper-alkaline solution. Applied Geochemistry, 2019, 111, 104439.                                                                                                  | 3.0 | 1         |
| 116 | A Consistent Approach for the Development of a Comprehensive Data Base of Time-Dependent<br>Parameters for Concrete Engineered Barriers. , 2013, , .                                                                                 |     | 1         |
| 117 | Influence of Cracks in Cementitious Engineered Barriers in a Near-Surface Disposal System: Assessment<br>Analysis of the Belgian Case. , 2013, , .                                                                                   |     | 0         |
| 118 | Geostatistical Mapping of Cs-137 Contamination Depth in Building Structures by Integrating ISOCS<br>Measurements of Different Spatial Supports. , 2013, , .                                                                          |     | 0         |
| 119 | Evolution of Microstructure and Transport Properties of Cement Pastes Due to Carbonation under a CO 2 Pressure Gradient—A Modeling Approach. , 2015, , .                                                                             |     | 0         |
| 120 | Fate and transport in environmental quality. Journal of Environmental Quality, 2021, 50, 1282-1289.                                                                                                                                  | 2.0 | 0         |