Rajendra K Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purification of Hibernating and Active Câ^' Ribosomes from Zinc-Starved Mycobacteria. Methods in Molecular Biology, 2021, 2314, 151-166.	0.9	1
2	Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. Microbiology (United Kingdom), 2021, 167, .	1.8	16
3	Replacement of S14 Protein in Ribosomes of Zinc-Starved Mycobacteria Reduces Spectinamide Sensitivity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	3
4	Distinct mechanisms of the human mitoribosome recycling and antibiotic resistance. Nature Communications, 2021, 12, 3607.	12.8	7
5	Structures of the human mitochondrial ribosome bound to EF-G1 reveal distinct features of mitochondrial translation elongation. Nature Communications, 2020, 11, 3830.	12.8	36
6	Reply to Tobiasson et al.: Zinc depletion is a specific signal for induction of ribosome hibernation in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2398-2399.	7.1	8
7	Structure of Human Mitochondrial Translation Initiation Factor 3 Bound to the Small Ribosomal Subunit. IScience, 2019, 12, 76-86.	4.1	36
8	Structural insights into unique features of the human mitochondrial ribosome recycling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8283-8288.	7.1	33
9	Joachim Frank's Binding with the Ribosome. Structure, 2019, 27, 411-419.	3.3	1
10	Zinc depletion induces ribosome hibernation in mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8191-8196.	7.1	64
11	The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie, 2015, 114, 119-126.	2.6	18
12	Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9822-9827.	7.1	40
13	Fragile X Mental Retardation Protein Regulates Translation by Binding Directly to the Ribosome. Molecular Cell, 2014, 54, 407-417.	9.7	215
14	Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7284-7289.	7.1	72
15	Insights into Structural Basis of Mammalian Mitochondrial Translation. , 2013, , 1-28.		9
16	Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO Journal, 2012, 31, 1836-1846.	7.8	43
17	Structural aspects of mitochondrial translational apparatus. Current Opinion in Structural Biology, 2012, 22, 797-803.	5.7	36
18	Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3918-3923.	7.1	51

Rajendra K Agrawal

#	Article	IF	CITATIONS
19	PSRP1 Is Not a Ribosomal Protein, but a Ribosome-binding Factor That Is Recycled by the Ribosome-recycling Factor (RRF) and Elongation Factor G (EF-G). Journal of Biological Chemistry, 2010, 285, 4006-4014.	3.4	66
20	A Single Mammalian Mitochondrial Translation Initiation Factor Functionally Replaces Two Bacterial Factors. Molecular Cell, 2008, 29, 180-190.	9.7	90
21	Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19315-19320.	7.1	101
22	Progression of the Ribosome Recycling Factor through the Ribosome Dissociates the Two Ribosomal Subunits. Molecular Cell, 2007, 27, 250-261.	9.7	50
23	A Structural Model for the Large Subunit of the Mammalian Mitochondrial Ribosome. Journal of Molecular Biology, 2006, 358, 193-212.	4.2	85
24	Interaction of the G′ Domain of Elongation Factor G and the C-Terminal Domain of Ribosomal Protein L7/L12 during Translocation as Revealed by Cryo-EM. Molecular Cell, 2005, 20, 723-731.	9.7	92
25	Visualization of ribosome-recycling factor on theEscherichia coli70S ribosome: Functional implications. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8900-8905.	7.1	147
26	Structure of the Mammalian Mitochondrial Ribosome Reveals an Expanded Functional Role for Its Component Proteins. Cell, 2003, 115, 97-108.	28.9	317
27	EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Structural Biology, 1999, 6, 643-647.	9.7	282
28	A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature, 1995, 376, 441-444.	27.8	396