Michele Trenti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103412/publications.pdf

Version: 2024-02-01

174 papers 13,002 citations

63 h-index 24258 110 g-index

177 all docs

177 docs citations

times ranked

177

4842 citing authors

#	Article	IF	CITATIONS
1	UV LUMINOSITY FUNCTIONS AT REDSHIFTS <i>>z</i> \$a^1/4 4 TO <i>z</i> \$a^1/4 10: 10,000 GALAXIES FROM <i>HST </i> LEGACY FIELDS. Astrophysical Journal, 2015, 803, 34.	4.5	980
2	ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 <i>z</i> å^¹¼ 7 AND <i>z</i> å^¹¼ 8 LYMAN-BREAK GALAXIES IN ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS. Astrophysical Journal, 2011, 737, 90.	THE 4.5	496
3	UV-CONTINUUM SLOPES AT <i>>z</i> â^1/4 4-7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF WELL-DEFINED UV COLOR-MAGNITUDE RELATIONSHIP FOR <i>z</i> â@3/4 4 STAR-FORMING GALAXIES. Astrophysical Journal, 2012, 754, 83.	F A 4.5	383
4	A REMARKABLY LUMINOUS GALAXY AT ZÂ=Â11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY. Astrophysical Journal, 2016, 819, 129.	4.5	345
5	UV-CONTINUUM SLOPES OF >4000 <i>z</i> early 4-8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS. Astrophysical Journal, 2014, 793, 115.	4.5	324
6	DISCOVERY OF <i>>z</i> > \hat{a}^{-1} /4 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS. Astrophysical Journal Letters, 2010, 709, L133-L137.	8.3	310
7	Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep Highâ€∢i>z⟨ i>Surveys. Astrophysical Journal, 2008, 676, 767-780.	4.5	283
8	A candidate redshift z â‰^ 10 galaxy and rapid changes in that population at an age of 500 Myr. Na 469, 504-507.	ture, 2011 27.8	·'265
9	THE MOST LUMINOUS <i>z < /i> â¹/4 9-10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr. Astrophysical Journal, 2014, 786, 108.</i>	C 4.5	257
10	$\langle i \rangle z \langle i \rangle \hat{a}^1 /_4$ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS. Astrophysical Journal Letters, 2010, 709, L16-L20.	8.3	233
11	PROBING THE DAWN OF GALAXIES AT <i>>z</i> >a^1/4 9-12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA. Astrophysical Journal, 2013, 773, 75.	4.5	230
12	THE <i>HST</i> EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER. Astrophysical Journal, Supplement Series, 2013, 209, 6.	7.7	226
13	LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE <i>UV</i> LUMINOSITY FUNCTIONS AT <i>z</i> ⩾ 5-8 FROM THE HUDF09 WFC3/IR OBSERVATIONS. Astrophysical Journal Letters, 2012, 752, L5.	8.3	224
14	The Universe Is Reionizing at zÂâ^¼Â7: Bayesian Inference of the IGM Neutral Fraction Using LyαÂEmission from Galaxies. Astrophysical Journal, 2018, 856, 2.	4.5	224
15	THE SPECTRAL ENERGY DISTRIBUTIONS OF $\langle i \rangle z \langle i \rangle$ â GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR. Astrophysical Journal Letters, 2013, 777, L19.	8.3	220
16	STRUCTURE AND MORPHOLOGIES OF <i>>z </i> >â^1/4 7-8 GALAXIES FROM ULTRA-DEEP WFC3/IR IMAGING OF THE HUBBLE ULTRA-DEEP FIELD. Astrophysical Journal Letters, 2010, 709, L21-L25.	8.3	206
17	Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science, 2015, 347, 1123-1126.	12.6	202
18	VERY BLUE UV-CONTINUUM SLOPE Î ² OF LOW LUMINOSITY < i>z < /i> â ¹ / ₄ 7 GALAXIES FROM WFC3/IR: EVIDENCE I EXTREMELY LOW METALLICITIES?. Astrophysical Journal Letters, 2010, 708, L69-L73.	FOR 8.3	201

#	Article	lF	CITATIONS
19	THE GALAXY UV LUMINOSITY FUNCTION BEFORE THE EPOCH OF REIONIZATION. Astrophysical Journal, 2015, 813, 21.	4.5	191
20	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE. Astrophysical Journal, 2015, 812, 114.	4.5	175
21	THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 & lt; <i>z</i> & lt; 9 FROM THE MOSFIRE SPECTROSCOPY OF <i>Y</i> -DROPOUTS. Astrophysical Journal Letters, 2013, 775, L29.	8.3	169
22	THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH. Astrophysical Journal Letters, 2010, 714, L202-L207.	8.3	163
23	STAR FORMATION RATES AND STELLAR MASSES OF <i>>z</i> = 7â€"8 GALAXIES FROM IRAC OBSERVATIONS OF THE WFC3/IR EARLY RELEASE SCIENCE AND THE HUDF FIELDS. Astrophysical Journal Letters, 2010, 716, L103-L108.	8.3	161
24	FORMATION RATES OF POPULATION III STARS AND CHEMICAL ENRICHMENT OF HALOS DURING THE REIONIZATION ERA. Astrophysical Journal, 2009, 694, 879-892.	4.5	147
25	THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE <i>z</i> å° ¹ / ₄ 8 LUMINOSITY FUNCTION. Astrophysical Journal, 2012, 760, 108.	4.5	142
26	Inferences on the timeline of reionization at z $\hat{a}^{1}/4$ 8 from the KMOS Lens-Amplified Spectroscopic Survey. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3947-3969.	4.4	142
27	RELICS: Reionization Lensing Cluster Survey. Astrophysical Journal, 2019, 884, 85.	4.5	141
28	THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS. Astrophysical Journal Letters, 2011, 727, L39.	8.3	139
29	CRITICAL STAR FORMATION RATES FOR REIONIZATION: FULL REIONIZATION OCCURS AT REDSHIFT <i>z</i> ali>ali>ali>ali>ali>ali>ali>ali>ali>al	, `4.5	133
30	ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB- <i>L</i> * <i>z</i> *a^1/4 7 AND <i>z</i> *a^1/4 8 GALAX IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION. Astrophysical Journal Letters, 2010, 708, L26-L31.	KIES 8.3	128
31	Constraining the Neutral Fraction of Hydrogen in the IGM at Redshift 7.5. Astrophysical Journal, 2019, 878, 12.	4.5	124
32	THROUGH THE LOOKING GLASS: <i>HST</i> SPECTROSCOPY OF FAINT GALAXIES LENSED BY THE FRONTIER FIELDS CLUSTER MACSJ0717.5+3745. Astrophysical Journal Letters, 2014, 782, L36.	8.3	117
33	THE BRIGHT END OF THE ULTRAVIOLET LUMINOSITY FUNCTION AT <i>z</i> each i>a^1/4 8: NEW CONSTRAINTS FROM CANDELS DATA IN GOODS-SOUTH. Astrophysical Journal, 2012, 759, 135.	4.5	116
34	THE EVOLUTION OF THE ULTRAVIOLET LUMINOSITY FUNCTION FROM <i>z</i> â ¹ /4 0.75 TO <i>z</i> â ¹ /4 2.5 USI <i>HST</i> ERS WFC3/UVIS OBSERVATIONS. Astrophysical Journal Letters, 2010, 725, L150-L155.	NG 8.3	112
35	THE LUMINOSITY FUNCTION AT <i>z</i> âî¼ 8 FROM 97 <i>Y</i> BAND DROPOUTS: INFERENCES ABOUT REIONIZATION. Astrophysical Journal, 2014, 786, 57.	4.5	112
36	THE BRIGHT END OF THE zÂâ^1⁄4Â9 AND zÂâ^1⁄4Â10 UV LUMINOSITY FUNCTIONS USING ALL FIVE CANDELS FIELDS FIELDSFIELDS		

3

#	Article	IF	CITATIONS
37	FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT⟨i⟩z⟨ i⟩â^1/₄ 10—THIMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES. Astrophysical Journal, 2015, 808, 104.	IE 4.5	104
38	Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170616.	2.1	102
39	EXPANDED SEARCH FOR (i>z < /i> â 4 10 GALAXIES FROM HUDF09, ERS, AND CANDELS DATA: EVIDENCE FOR ACCELERATED EVOLUTION AT (i>z < /i> & gt; 8?. Astrophysical Journal, 2012, 745, 110.	4.5	98
40	A PHYSICAL MODEL FOR THE 0 \hat{a} % 2 <i>z</i> \hat{a} % 2 8 REDSHIFT EVOLUTION OF THE GALAXY ULTRAVIOLET LUMII AND STELLAR MASS FUNCTIONS. Astrophysical Journal Letters, 2013, 768, L37.	NOSITY	98
41	CONFIRMATION OF THE COMPACTNESS OF A <i>>z</i> = 1.91 QUIESCENT GALAXY WITH <i>HUBBLE SPACE TELESCOPE</i> $\hat{a} \in \mathbb{T}$ S WIDE FIELD CAMERA 3. Astrophysical Journal Letters, 2010, 714, L244-L248.	8.3	97
42	No energy equipartition in globular clusters. Monthly Notices of the Royal Astronomical Society, 2013, 435, 3272-3282.	4.4	97
43	THE STELLAR MASS STRUCTURE OF MASSIVE GALAXIES FROM <i>>z </i> = 0 TO <i>z </i> = 2.5: SURFACE DENSITY PROFILES AND HALF-MASS RADII. Astrophysical Journal, 2013, 763, 73.	4.5	97
44	The UDF05 Followâ€up of the Hubble Ultra Deep Field. I. The Faintâ€End Slope of the Lyman Break Galaxy Population at <i>>z</i> â¹¼ 5. Astrophysical Journal, 2007, 671, 1212-1226.	4.5	85
45	METAL-FREE GAS SUPPLY AT THE EDGE OF REIONIZATION: LATE-EPOCH POPULATION III STAR FORMATION. Astrophysical Journal, 2009, 700, 1672-1679.	4.5	85
46	THE ENVIRONMENTS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS. Astrophysical Journal, 2009, 695, 809-817.	4.5	83
47	THE EVOLUTION OF MASS-SIZE RELATION FOR LYMAN BREAK GALAXIES FROM $\langle i \rangle z \langle i \rangle = 1$ to $\langle i \rangle z \langle i \rangle = 7$. Astrophysical Journal Letters, 2012, 756, L12.	8.3	83
48	The environment of bright QSOs at z $\hat{a}^{1/4}$ 6: star-forming galaxies and X-ray emission. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2146-2174.	4.4	83
49	THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. II. CONSTRAINTS ON REIONIZATION FROM <i>Z</i> -DROPOUT GALAXIES. Astrophysical Journal, 2009, 690, 1350-1357.	4.5	80
50	INFERENCES ON THE DISTRIBUTION OF Lyα EMISSION OF <i>z</i> å^¼ 7 AND <i>z</i> å^¼ 8 GALAXIES. Astrophys Journal, 2012, 747, 27.	ical 4.5	80
51	MEASUREMENT OF GALAXY CLUSTERING AT < i>>z < /i>>â 1 4 7.2 AND THE EVOLUTION OF GALAXY BIAS FROM 3.8 & lt; < i>z < /i>& lt; 8 IN THE XDF, GOODS-S, AND GOODS-N. Astrophysical Journal, 2014, 793, 17.	4.5	76
52	OVERDENSITIES OF <i>Y</i> -DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT <i>z</i> -8. Astrophysical Journal, 2012, 746, 55.	4.5	73
53	Star clusters with primordial binaries - I. Dynamical evolution of isolated models. Monthly Notices of the Royal Astronomical Society, 2006, 368, 677-689.	4.4	72
54	TIDAL DISRUPTION, GLOBAL MASS FUNCTION, AND STRUCTURAL PARAMETER EVOLUTION IN STAR CLUSTERS. Astrophysical Journal, 2010, 708, 1598-1610.	4.5	72

#	Article	IF	Citations
55	Star clusters with primordial binaries - II. Dynamical evolution of models in a tidal field. Monthly Notices of the Royal Astronomical Society, 2007, 374, 344-356.	4.4	70
56	Star clusters with primordial binaries - III. Dynamical interaction between binaries and an intermediate-mass black hole. Monthly Notices of the Royal Astronomical Society, 2007, 374, 857-866.	4.4	70
57	ULTRADEEP IRAC IMAGING OVER THE HUDF AND GOODS-SOUTH: SURVEY DESIGN AND IMAGING DATA RELEASE. Astrophysical Journal, Supplement Series, 2015, 221, 23.	7.7	69
58	Intermediateâ€Mass Black Hole Induced Quenching of Mass Segregation in Star Clusters. Astrophysical Journal, 2008, 686, 303-309.	4.5	68
59	CONSTRAINTS ON THE IONIZING EFFICIENCY OF THE FIRST GALAXIES. Astrophysical Journal Letters, 2012, 759, L38.	8.3	68
60	Beacons into the Cosmic Dark Ages: Boosted Transmission of LyαÂfrom UV Bright Galaxies at zÂ≳Â7. Astrophysical Journal Letters, 2018, 857, L11.	8.3	68
61	MORPHOLOGICAL EVOLUTION OF GALAXIES FROM ULTRA-DEEP <i>HUBBLE SPACE TELESCOPE </i> FIELD CAMERA 3 IMAGING: THE HUBBLE SEQUENCE AT <i>z < /i> â 4 2. Astrophysical Journal Letters, 2011, 735, L22.</i>	8.3	67
62	CORRECTING THE < i>z < /i> \hat{a}^{1} /4 8 GALAXY LUMINOSITY FUNCTION FOR GRAVITATIONAL LENSING MAGNIFICATION BIAS. Astrophysical Journal, 2015, 805, 79.	4.5	67
63	GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT <i>z</i> ≳ 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION. Astrophysical Journal Letters, 2012, 749, L38.	8.3	63
64	THE RELATIVE AND ABSOLUTE AGES OF OLD GLOBULAR CLUSTERS IN THE LCDM FRAMEWORK. Astrophysical Journal Letters, 2015, 808, L35.	8.3	62
65	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Lyα EMISSION AT FROM HST SPECTROSCOPY. Astrophysical Journal, 2016, 818, 38.	4.5	60
66	The Bright-end Galaxy Candidates at zÂâ^¼Â9 from 79 Independent HST Fields. Astrophysical Journal, 2018, 867, 150.	4.5	60
67	RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies. Astrophysical Journal, 2020, 889, 189.	4.5	58
68	RELICS: A Candidate zÂâ^1⁄4Â10 Galaxy Strongly Lensed into a Spatially Resolved Arc. Astrophysical Journal Letters, 2018, 864, L22.	8.3	57
69	RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey. Astrophysical Journal, 2018, 859, 159.	4.5	55
70	BRIGHT GALAXIES AT HUBBLE'S REDSHIFT DETECTION FRONTIER: PRELIMINARY RESULTS AND DESIGN FROM THE REDSHIFT z â ⁻¹ ⁄ ₄ 9–10 BoRG PURE-PARALLEL HST SURVEY. Astrophysical Journal, 2016, 817, 120.	4.5	54
71	A highly magnified star at redshift 6.2. Nature, 2022, 603, 815-818.	27.8	53
72	ACTIVE AND PASSIVE GALAXIES AT <i>>z</i> > $\hat{a}^{1}/4$ 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3. Astrophysical Journal, 2011, 743, 146.	4.5	52

#	Article	IF	Citations
73	THE < i > GRISM LENS-AMPLIFIED SURVEY FROM SPACE < / i > (< i > GLASS < / i >). II. GAS-PHASE METALLICITY AND RADIAL GRADIENTS IN AN INTERACTING SYSTEM AT < i > Z < / i > \hat{a} % f 2. Astronomical Journal, 2015, 149, 107.	4.7	52
74	Massive Dead Galaxies at z $\hat{a}^{1}/4$ 2 with HST Grism Spectroscopy. I. Star Formation Histories and Metallicity Enrichment. Astrophysical Journal, 2019, 877, 141.	4.5	52
75	THE CLOSE STELLAR COMPANIONS TO INTERMEDIATE-MASS BLACK HOLES. Astrophysical Journal, 2016, 819, 70.	4.5	51
76	A REST-FRAME OPTICAL VIEW ON $\langle i \rangle_z \langle i \rangle_a^2 / 4$ GALAXIES. I. COLOR AND AGE DISTRIBUTIONS FROM DEEP IRAC PHOTOMETRY OF THE IUDF10 AND GOODS SURVEYS. Astrophysical Journal, 2013, 772, 136.	4.5	50
77	GAMMA-RAY BURSTS TRACE UV METRICS OF STAR FORMATION OVER 3 < <i>z</i> < 5. Astrophysical Journal, 2015, 809, 76.	4.5	50
78	THE LUMINOSITY AND STELLAR MASS FUNCTIONS OF GRB HOST GALAXIES: INSIGHT INTO THE METALLICITY BIAS. Astrophysical Journal, 2015, 802, 103.	4.5	48
79	The Grism Lens-Amplified Survey from Space (GLASS). XI. Detection of C iv in Multiple Images of the zÂ=Â6.11 Lyα Emitter behind RXC J2248.7–4431. Astrophysical Journal, 2017, 839, 17.	4.5	48
80	COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND <i>r</i> -PROCESS SYNTHESIS IN THE EARLY UNIVERSE. Astrophysical Journal Letters, 2015, 802, L22.	8.3	47
81	HOW WELL DO COSMOLOGICAL SIMULATIONS REPRODUCE INDIVIDUAL HALO PROPERTIES?. Astrophysical Journal, 2010, 711, 1198-1207.	4.5	46
82	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY. Astrophysical Journal, 2015, 811, 29.	4.5	46
83	The Grism Lens-Amplified Survey from Space (GLASS). X. Sub-kiloparsec Resolution Gas-phase Metallicity Maps at Cosmic Noon behind the Hubble Frontier Fields Cluster MACS1149.6+2223. Astrophysical Journal, 2017, 837, 89.	4.5	45
84	A family of models of partially relaxed stellar systems. Astronomy and Astrophysics, 2005, 433, 57-72.	5.1	45
85	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). VI. COMPARING THE MASS AND LIGHT IN MACS J0416.1-2403 USING FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY. Astrophysical Journal, 2016, 831, 182.	4.5	43
86	Discovery of Strongly Inverted Metallicity Gradients in Dwarf Galaxies at zÂâ ¹ /4Â2. Astrophysical Journal, 2019, 882, 94.	4.5	42
87	The impact of scatter in the galaxy UV luminosity to halo mass relation on Ly α visibility during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3602-3613.	4.4	42
88	Detecting gravitationally lensed Population III galaxies with the <i>Hubble Space Telescope </i> and the <i>James Webb Space Telescope </i> Monthly Notices of the Royal Astronomical Society, 2012, 427, 2212-2223.	4.4	39
89	PHOTOMETRIC CONSTRAINTS ON THE REDSHIFT OF $\langle i \rangle z \langle i \rangle$ $\hat{a}^{1}/4$ 10 CANDIDATE UDFj-39546284 FROM DEEPER WFC3/IR+ACS+IRAC OBSERVATIONS OVER THE HUDF. Astrophysical Journal Letters, 2013, 765, L16.	8.3	39
90	First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon. Astrophysical Journal, 2017, 838, 14.	4.5	36

#	Article	lF	CITATIONS
91	GAMMA-RAY BURST AND STAR FORMATION RATES: THE PHYSICAL ORIGIN FOR THE REDSHIFT EVOLUTION OF THEIR RATIO. Astrophysical Journal Letters, 2013, 773, L22.	8.3	35
92	The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. Astrophysical Journal, 2017, 835, 254.	4.5	33
93	HST Grism Observations of a Gravitationally Lensed Redshift 9.5 Galaxy. Astrophysical Journal, 2018, 854, 39.	4.5	32
94	Spectroscopically Confirmed Lyı̂ \pm Emitters from Redshift 5 to 7 behind 10 Galaxy Cluster Lenses. Astrophysical Journal, 2020, 896, 156.	4.5	32
95	Distribution of the Very First Population III Stars and Their Relation to Bright <i>z</i> â‰^ 6 Quasars. Astrophysical Journal, 2007, 667, 38-48.	4.5	31
96	WIDESPREAD PRESENCE OF SHALLOW CUSPS IN THE SURFACE-BRIGHTNESS PROFILE OF GLOBULAR CLUSTERS. Astrophysical Journal Letters, 2010, 720, L179-L184.	8.3	31
97	DETECTION OF LYMAN-ALPHA EMISSION FROM A TRIPLY IMAGED $z=6.85$ GALAXY BEHIND MACS J2129.4 \hat{a} °074. Astrophysical Journal Letters, 2016, 823, L14.	l. 8.3	31
98	Small-scale Intensity Mapping: Extended Lyα, Hα, and Continuum Emission as a Probe of Halo Star Formation in High-redshift Galaxies. Astrophysical Journal, 2017, 841, 19.	4.5	31
99	Mass and Light of Abell 370: A Strong and Weak Lensing Analysis. Astrophysical Journal, 2018, 868, 129.	4.5	30
100	The Super Eight Galaxies: Properties of a Sample of Very Bright Galaxies at 7 < <i>z</i> < 8. Astrophysical Journal, 2019, 882, 42.	4.5	30
101	DETECTION OF THREE GAMMA-RAY BURST HOST GALAXIES AT z â^1/4 6. Astrophysical Journal, 2016, 825, 135.	4.5	29
102	Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization. Nature Astronomy, 2017, 1, .	10.1	29
103	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). VII. THE DIVERSITY OF THE DISTRIBUTION OF STAR FORMATION IN CLUSTER AND FIELD GALAXIES AT 0.3 ≠z ≠0.7. Astrophysical Journal, 2016, 833, 178.	4.5	29
104	GALAXY FORMATION IN HEAVILY OVERDENSE REGIONS AT $\langle i \rangle_z \langle i \rangle$ $\hat{a}^1/4$ 10: THE PREVALENCE OF DISKS IN MASSIVE HALOS. Astrophysical Journal Letters, 2011, 738, L19.	8.3	28
105	MASS SEGREGATION IN NGC 2298: LIMITS ON THE PRESENCE OF AN INTERMEDIATE MASS BLACK HOLE. Astrophysical Journal, 2009, 699, 1511-1517.	4.5	27
106	THE DYNAMICAL STATE OF THE GLOBULAR CLUSTER M10 (NGC 6254). Astrophysical Journal, 2010, 713, 194-204.	4.5	27
107	Primordial star clusters at extreme magnification. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3057-3063.	4.4	27
108	Connecting faint-end slopes of the Lyman emitter and Lyman-break galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1284-1290.	4.4	27

#	Article	IF	CITATIONS
109	RELICS: Strong Lensing Analysis of MACS J0417.5–1154 and Predictions for Observing the Magnified High-redshift Universe with JWST. Astrophysical Journal, 2019, 873, 96.	4.5	27
110	Thermodynamic Description of a Family of Partially Relaxed Stellar Systems. Astrophysical Journal, 2003, 584, 729-734.	4.5	26
111	Partial Suppression of the Radial Orbit Instability in Stellar Systems. Astrophysical Journal, 2006, 637, 717-726.	4.5	26
112	MILKY WAY RED DWARFS IN THE BORG SURVEY; GALACTIC SCALE-HEIGHT AND THE DISTRIBUTION OF DWARF STARS IN WFC3 IMAGING. Astrophysical Journal, 2014, 788, 77.	4.5	26
113	The impact of strong gravitational lensing on observed Lyman-break galaxy numbers at 4 \hat{a} % z \hat{a} % 8 in the GOODS and the XDF blank fields. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1224-1236.	4.4	26
114	RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9â^'40.7. Astrophysical Journal, 2018, 858, 42.	4.5	26
115	The Physical Properties of Luminous z ≳ 8 Galaxies and Implications for the Cosmic Star Formation Rate Density from ⰼ0.35 deg ² of (Pure-)Parallel HST Observations*. Astrophysical Journal, 2022, 927, 236.	4.5	26
116	A family of models of partially relaxed stellar systems. Astronomy and Astrophysics, 2005, 429, 161-172.	5.1	25
117	THE DARK SIDE OF QSO FORMATION AT HIGH REDSHIFTS. Astrophysical Journal, 2011, 736, 66.	4.5	25
118	GALAXY CANDIDATES AT zÂâ^¼Â10 IN ARCHIVAL DATA FROM THE BRIGHTEST OF REIONIZING GALAXIES (BORG[z SURVEY. Astrophysical Journal, 2016, 827, 76.	28]) 4.5	25
119	RELICS: Strong Lensing Analysis of the Galaxy Clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849. Astrophysical Journal, 2018, 863, 145.	4.5	24
120	Where Can We Really Find the First Stars' Remnants Today?. Astrophysical Journal, 2008, 687, 1-6.	4.5	23
121	HST Follow-up Observations of Two Bright zÂâ^1/4Â8 Candidate Galaxies from the BoRG Pure-parallel Survey. Astrophysical Journal Letters, 2018, 861, L17.	8.3	22
122	SuperBoRG: Exploration of Point Sources at zÂâ^1/4Â8 in HST Parallel Fields*. Astrophysical Journal, 2020, 904, 50.	4.5	22
123	THE CLUSTERING PROPERTIES OF THE FIRST GALAXIES. Astrophysical Journal Letters, 2010, 716, L190-L194.	8.3	21
124	THE UDF05 FOLLOW-UP OF THE HUBBLE ULTRA DEEP FIELD. III. THE LUMINOSITY FUNCTION AT < i> z < /i> $\hat{a}^{1}/4$ 6. Astrophysical Journal, 2011, 738, 123.	4.5	21
125	TRACING THE MASS GROWTH AND STAR FORMATION RATE EVOLUTION OF MASSIVE GALAXIES FROM < i> Z < /i> \hat{a}^{-1} , 6 TO < i> Z < /i > \hat{a}^{-1} /4 1 IN THE HUBBLE ULTRA-DEEP FIELD. Astrophysical Journal, 2014, 780, 34.	/4 4.5 	20
126	RELICS: Properties of z $\%$ 5.5 Galaxies Inferred from Spitzer and Hubble Imaging, Including A Candidate z $\%$ 6.8 Strong [O iii] emitter. Astrophysical Journal, 2021, 910, 135.	4.5	20

#	Article	IF	CITATIONS
127	The Brightest Galaxies at Cosmic Dawn from Scatter in the Galaxy Luminosity versus Halo Mass Relation. Astrophysical Journal, 2019, 878, 114.	4.5	20
128	The DUVET Survey: Direct T _e -based Metallicity Mapping of Metal-enriched Outflows and Metal-poor Inflows in Markarian 1486. Astrophysical Journal Letters, 2021, 918, L16.	8.3	19
129	The Grism Lens-Amplified Survey from Space (GLASS). VIII. The Influence of the Cluster Properties on Hα Emitter Galaxies at 0.3Â<ÂzÂ<Â0.7. Astrophysical Journal, 2017, 837, 126.	4.5	18
130	RELICS: High-resolution Constraints on the Inner Mass Distribution of the zÂ=Â0.83 Merging Cluster RXJ0152.7-1357 from Strong Lensing. Astrophysical Journal, 2019, 874, 132.	4.5	18
131	The size–luminosity relation of lensed galaxies at <i>z</i> ⹼ 6–9 in the Hubble Frontier Fields. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1148-1161.	4.4	17
132	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL DISTRIBUTION OF STAR FORMATION IN $\langle i \rangle z \langle /i \rangle \hat{a}^1 /\!\!/ 0.5$ CLUSTER GALAXIES. Astrophysical Journal, 2015, 814, 161.	4.5	16
133	EXTREMELY METAL-POOR STARS IN THE MILKY WAY: A SECOND GENERATION FORMED AFTER REIONIZATION. Astrophysical Journal, 2010, 712, 435-444.	4.5	15
134	Dark-ages reionization and galaxy-formation simulation– VI. The origins and fate of the highest known redshift galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3556-3562.	4.4	15
135	Prospects for detection of intermediate-mass black holes in globular clusters using integrated-light spectroscopy. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4057-4066.	4.4	15
136	Characterization and Modeling of Contamination for Lyman Break Galaxy Samples at High Redshift. Astrophysical Journal, 2017, 836, 239.	4.5	15
137	Metal Deficiency in Two Massive Dead Galaxies at zÂâ^1/4Â2. Astrophysical Journal Letters, 2018, 856, L4.	8.3	15
138	The Cosmic Web around the Brightest Galaxies during the Epoch of Reionization. Astrophysical Journal, 2018, 856, 81.	4.5	13
139	Gamma-Ray Bursts and the Early Star-Formation History. Space Science Reviews, 2016, 202, 181-194.	8.1	12
140	The Size and Shape of the Milky Way Disk and Halo from M-type Brown Dwarfs in the BoRG Survey. Monthly Notices of the Royal Astronomical Society, 0, , stw258.	4.4	12
141	Wandering off the centre: a characterization of the random motion of intermediate-mass black holes in star clusters. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1574-1586.	4.4	12
142	Dynamically formed black hole binaries: In-cluster versus ejected mergers. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	11
143	A geostatistical analysis of multiscale metallicity variations in galaxies – I. Introduction and comparison of high-resolution metallicity maps to an analytical metal transport model. Monthly Notices of the Royal Astronomical Society, 2021, 508, 489-507.	4.4	11
144	Dark-ages reionization and galaxy formation simulation–XI. Clustering and halo masses of high redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1995-2008.	4.4	10

#	Article	IF	Citations
145	Stochastic Processes as the Origin of the Double Power-law Shape of the Quasar Luminosity Function. Astrophysical Journal, 2020, 894, 124.	4.5	10
146	RELICS: A Very Large (θ _E Ââ^¼Â40″) Cluster Lens—RXC J0032.1+1808. Astrophysical Journal, 2026.	20 <u>,</u> 898,	10
147	Predictions for triple stars with and without a pulsar in star clusters. Monthly Notices of the Royal Astronomical Society, 2008, 387, 815-824.	4.4	9
148	The clustering and halo occupation distribution of Lyman-break galaxies at <i>z</i> Ââ^1⁄4Â4. Monthly Notices of the Royal Astronomical Society, 2016, 461, 176-189.	4.4	9
149	Neutral Gas Density in Damped Lyα Systems. Astrophysical Journal, 2006, 651, 51-60.	4.5	8
150	The Grism Lens-amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at zÂ>Â1*. Astronomical Journal, 2018, 156, 29.	4.7	8
151	GLACiAR, an Open-Source Python Tool for Simulations of Source Recovery and Completeness in Galaxy Surveys. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	8
152	Correlation between mass segregation and structural concentration in relaxed stellar clusters. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5752-5760.	4.4	8
153	One star, two stars, or both? Investigating metallicity-dependent models for gamma-ray burst progenitors with the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2020, 495, 266-277.	4.4	8
154	RELICS-DP7: Spectroscopic Confirmation of a Dichromatic Primeval Galaxy at z \hat{a}^4 7. Astrophysical Journal Letters, 2021, 908, L30.	8.3	7
155	A quantitative assessment of completeness correction methods and public release of a versatile simulation code. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5836-5857.	4.4	7
156	A Physical Model for the Quasar Luminosity Function Evolution between Cosmic Dawn and High Noon. Astrophysical Journal, 2021, 923, 110.	4.5	6
157	A novel approach to investigate chemical inhomogeneities in GRB host galaxies: the ⟨i>Z⟨ i>abs–⟨i>Z⟨ i⟩emiss relation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5992-6007.	4.4	5
158	A geostatistical analysis of multiscale metallicity variations in galaxies – II. Predicting the metallicities of H <scp>ii</scp> and diffuse ionized gas regions via universal kriging. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4465-4488.	4.4	5
159	Population III Star Formation During and After the Reionization Epoch. AIP Conference Proceedings, 2010, , .	0.4	4
160	Dust Absorption Along the Line of Sight for Highâ∈Redshift Objects. Astrophysical Journal, 2006, 651, 704-712.	4.5	3
161	Observational determination of the galaxy bias from cosmic variance with a random pointing survey: clustering of <i>>z</i> \$a^1/4 2 galaxies from Hubble's BoRG survey. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1922-1933.	4.4	3
162	STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES. Astronomical Journal, 2009, 138, 1296-1309.	4.7	2

#	Article	IF	CITATIONS
163	The Diversity of Environments around Luminous Quasars at Redshift z \hat{a}^4 6. Astrophysical Journal, 2021, 917, 89.	4.5	2
164	Spatially resolved direct method metallicity in a high-redshift analogue local galaxy: temperature structure impact on metallicity gradients. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
165	The brightest of reionizing galaxies (BoRG) survey. AIP Conference Proceedings, 2012, , .	0.4	1
166	A spectroscopically confirmed $\langle i \rangle z \langle i \rangle \hat{A} = \hat{A}1.327$ galaxy-scale deflector magnifying $a \langle i \rangle z \langle i \rangle \hat{A} = \hat{A}1.327$ galaxy in the Brightest of Reionizing Galaxies survey. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3069-3082.	4.4	1
167	The Galaxy UV Luminosity Function Before the Epoch of Reionization. Proceedings of the International Astronomical Union, 2015, 11, 33-33.	0.0	1
168	Prospects for Extending the Mass–Metallicity Relation to Low Mass at High Redshift: A Case Study at zÂâ⁻¼Â1. Astrophysical Journal, 2019, 882, 116.	4.5	1
169	Dynamical Evolution of Star Clusters with Intermediate Mass Black Holes and Primordial Binaries. Proceedings of the International Astronomical Union, 2007, 3, 256-260.	0.0	O
170	The Very First Population III Stars and Their Relation to Bright zâ‰^6 Quasars. , 2008, , .		0
171	Galaxy sets distance mark. Nature, 2010, 467, 924-925.	27.8	O
172	All NIRspec Needs is HST/WFC3 Pre-Imaging? The Use of Milky Way Stars in WFC3 Imaging to Register NIRspec MSA Observations. Journal of Astronomical Instrumentation, 2016, 05, 1650008.	1.5	0
173	Evolution histories of massive galaxies at zâ^1/42 over the past 3 Gyr. Proceedings of the International Astronomical Union, 2019, 15, 50-54.	0.0	O
174	Gamma-Ray Bursts and the Early Star-Formation History. Space Sciences Series of ISSI, 2016, , 183-196.	0.0	0