Douglas J Perkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2103095/publications.pdf

Version: 2024-02-01

147801 175258 2,942 76 31 52 citations g-index h-index papers 79 79 79 3235 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Complement component 3 mutations alter the longitudinal risk of pediatric malaria and severe malarial anemia. Experimental Biology and Medicine, 2022, 247, 672-682.	2.4	3
2	A Comprehensive COVID-19 Daily News and Medical Literature Briefing to Inform Health Care and Policy in New Mexico: Implementation Study. JMIR Medical Education, 2022, 8, e23845.	2.6	O
3	Elevated SARS-CoV-2 in peripheral blood and increased COVID-19 severity in American Indians/Alaska Natives. Experimental Biology and Medicine, 2022, 247, 1253-1263.	2.4	2
4	Genetic variation in CSF2 ($5q31.1$) is associated with longitudinal susceptibility to pediatric malaria, severe malarial anemia, and all-cause mortality in a high-burden malaria and HIV region of Kenya. Tropical Medicine and Health, 2022, 50, .	2.8	2
5	COVID-19 global pandemic planning: Performance and electret charge of N95 respirators after recommended decontamination methods. Experimental Biology and Medicine, 2021, 246, 740-748.	2.4	10
6	Comparative genomic and phenotypic characterization of invasive non-typhoidal Salmonella isolates from Siaya, Kenya. PLoS Neglected Tropical Diseases, 2021, 15, e0008991.	3.0	3
7	Using Machine Learning Imputed Outcomes to Assess Drug-Dependent Risk of Self-Harm in Patients with Bipolar Disorder: A Comparative Effectiveness Study. JMIR Mental Health, 2021, 8, e24522.	3.3	3
8	COVID-19 global pandemic planning: Presence of SARS-CoV-2 fomites in a university hospital setting. Experimental Biology and Medicine, 2021, 246, 2039-2045.	2.4	7
9	Staged progression epidemic models for the transmission of invasive nontyphoidal & lt;i>Salmonella (iNTS) with treatment. Mathematical Biosciences and Engineering, 2021, 18, 1529-1549.	1.9	2
10	COVID-19 global pandemic planning: Dry heat incubation and ambient temperature fail to consistently inactivate SARS-CoV-2 on N95 respirators. Experimental Biology and Medicine, 2021, 246, 952-959.	2.4	4
11	Imputation and characterization of uncoded self-harm in major mental illness using machine learning. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 136-146.	4.4	17
12	Cyclooxygenase-2 haplotypes influence the longitudinal risk of malaria and severe malarial anemia in Kenyan children from a holoendemic transmission region. Journal of Human Genetics, 2020, 65, 99-113.	2.3	11
13	Diabetes mellitus risk for 102 drugs and drug combinations used in patients with bipolar disorder. Psychoneuroendocrinology, 2020, 112, 104511.	2.7	17
14	Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19. ACS Pharmacology and Translational Science, 2020, 3, 1278-1292.	4.9	43
15	Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Antibody Titers in Convalescent Plasma and Recipients in New Mexico: An Open Treatment Study in Patients With Coronavirus Disease 2019. Journal of Infectious Diseases, 2020, 222, 1620-1628.	4.0	41
16	COVID-19 global pandemic planning: Decontamination and reuse processes for N95 respirators. Experimental Biology and Medicine, 2020, 245, 933-939.	2.4	31
17	Genetic variation in interleukin-7 is associated with a reduced erythropoietic response in Kenyan children infected with Plasmodium falciparum. BMC Medical Genetics, 2019, 20, 140.	2.1	8
18	Assessing the Dynamics and Complexity of Disease Pathogenicity Using 4-Dimensional Immunological Data. Frontiers in Immunology, 2019, 10, 1258.	4.8	7

#	Article	IF	Citations
19	Molecular basis of reduced LAIR1 expression in childhood severe malarial anaemia: Implications for leukocyte inhibitory signalling. EBioMedicine, 2019, 45, 278-289.	6.1	11
20	Integrated OMICS platforms identify LAIR1 genetic variants as novel predictors of cross-sectional and longitudinal susceptibility to severe malaria and all-cause mortality in Kenyan children. EBioMedicine, 2019, 45, 290-302.	6.1	10
21	Direct detection of bacteremia by exploiting host-pathogen interactions of lipoteichoic acid and lipopolysaccharide. Scientific Reports, 2019, 9, 6203.	3.3	20
22	Comparison of 71 bipolar disorder pharmacotherapies for kidney disorder risk: The potential hazards of polypharmacy. Journal of Affective Disorders, 2019, 252, 201-211.	4.1	8
23	Preferences of Information Dissemination on Treatment for Bipolar Disorder: Patient-Centered Focus Group Study. JMIR Mental Health, 2019, 6, e12848.	3.3	8
24	Comprehensive comparison of monotherapies for psychiatric hospitalization risk in bipolar disorders. Bipolar Disorders, 2018, 20, 761-771.	1.9	6
25	Systemic challenges in bipolar disorder management: A patientâ€eentered approach. Bipolar Disorders, 2017, 19, 676-688.	1.9	19
26	Association between $Fc\hat{l}^3$ receptor IIA, IIIA and IIIB genetic polymorphisms and susceptibility to severe malaria anemia in children in western Kenya. BMC Infectious Diseases, 2017, 17, 289.	2.9	18
27	Haplotype of non-synonymous mutations within IL-23R is associated with susceptibility to severe malaria anemia in a P. falciparum holoendemic transmission area of Kenya. BMC Infectious Diseases, 2017, 17, 291.	2.9	12
28	CD4 T-cell expression of IFN- \hat{I}^3 and IL-17 in pediatric malarial anemia. PLoS ONE, 2017, 12, e0175864.	2.5	17
29	Antimalarials: Molecular Drug Targets and Mechanism of Action. Current Topics in Medicinal Chemistry, 2017, 17, 2114-2128.	2.1	10
30	Reduced Hsp70 and Glutamine in Pediatric Severe Malaria Anemia: Role of hemozoin in Suppressing Hsp70 and NF-κB Activation. Molecular Medicine, 2016, 22, 570-584.	4.4	17
31	Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation. Mediators of Inflammation, 2016, 2016, 1-14.	3.0	18
32	Hypothyroidism risk compared among nine common bipolar disorder therapies in a large <scp>US</scp> cohort. Bipolar Disorders, 2016, 18, 247-260.	1.9	29
33	Cystic fibrosis CFBE41o―cells contain TLR1 SNP I602S and fail to respond to Mycobacterium abscessus. Journal of Cystic Fibrosis, 2013, 12, 773-779.	0.7	6
34	Suppressed circulating bicyclo-PGE2 levels and leukocyte COX-2 transcripts in children co-infected with P. falciparum malaria and HIV-1 or bacteremia. Biochemical and Biophysical Research Communications, 2013, 436, 585-590.	2.1	10
35	Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions. PLoS ONE, 2013, 8, e53984.	2.5	18
36	Connecting Network Properties of Rapidly Disseminating Epizoonotics. PLoS ONE, 2012, 7, e39778.	2. 5	35

#	Article	IF	CITATIONS
37	Relationship between inflammatory mediator patterns and anemia in HIV†positive and exposed children with <i>Plasmodium falciparum</i> malaria. American Journal of Hematology, 2012, 87, 652-658.	4.1	18
38	Reduced systemic bicycloâ€prostaglandinâ€E ₂ and cyclooxygenaseâ€2 gene expression are associated with inefficient erythropoiesis and enhanced uptake of monocytic hemozoin in children with severe malarial anemia. American Journal of Hematology, 2012, 87, 782-789.	4.1	12
39	Reduced interferon (IFN)-α conditioned by IFNA2 (â^173) and IFNA8 (â^884) haplotypes is associated with enhanced susceptibility to severe malarial anemia and longitudinal all-cause mortality. Human Genetics, 2012, 131, 1375-1391.	3.8	17
40	Functional haplotypes of Fc gamma (Fc \hat{I}^3) receptor (Fc \hat{I}^3 RIIA and Fc \hat{I}^3 RIIIB) predict risk to repeated episodes of severe malarial anemia and mortality in Kenyan children. Human Genetics, 2012, 131, 289-299.	3.8	23
41	Severe Malarial Anemia: Innate Immunity and Pathogenesis. International Journal of Biological Sciences, 2011, 7, 1427-1442.	6.4	221
42	Mechanisms of erythropoiesis inhibition by malarial pigment and malariaâ€induced proinflammatory mediators in an in vitro model. American Journal of Hematology, 2011, 86, 155-162.	4.1	39
43	Functional Promoter Haplotypes of Interleukin-18 Condition Susceptibility to Severe Malarial Anemia and Childhood Mortality. Infection and Immunity, 2011, 79, 4923-4932.	2.2	17
44	Identification of Inflammatory Biomarkers for Pediatric Malarial Anemia Severity Using Novel Statistical Methods. Infection and Immunity, 2011, 79, 4674-4680.	2.2	44
45	Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HÎ ² D2 Gene Expression and IL-8 Release. PLoS ONE, 2011, 6, e29148.	2.5	57
46	Hematological predictors of increased severe anemia in Kenyan children coinfected with ⟨i⟩ Plasmodium falciparum⟨i⟩ and HIVâ€1. American Journal of Hematology, 2010, 85, 227-233.	4.1	48
47	Clinical predictors of severe malarial anaemia in a holoendemic <i>Plasmodium falciparum</i> transmission area. British Journal of Haematology, 2010, 149, 711-721.	2.5	35
48	A Novel Functional Variant in the Stem Cell Growth Factor Promoter Protects against Severe Malarial Anemia. Infection and Immunity, 2010, 78, 453-460.	2.2	21
49	Suppression of a Novel Hematopoietic Mediator in Children with Severe Malarial Anemia. Infection and Immunity, 2009, 77, 3864-3871.	2.2	21
50	Naturally acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes and Infection, 2009, 11, 811-819.	1.9	28
51	Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Human Genetics, 2008, 124, 515-524.	3.8	75
52	Increased circulating interleukin (IL)-23 in children with malarial anemia: In vivo and in vitro relationship with co-regulatory cytokines IL-12 and IL-10. Clinical Immunology, 2008, 126, 211-221.	3.2	36
53	Polymorphic Variability in the Interleukin (IL)–1β Promoter Conditions Susceptibility to Severe Malarial Anemia and Functional Changes in ILâ€1β Production. Journal of Infectious Diseases, 2008, 198, 1219-1226.	4.0	44
54	Role of Monocyte-Acquired Hemozoin in Suppression of Macrophage Migration Inhibitory Factor in Children with Severe Malarial Anemia. Infection and Immunity, 2007, 75, 201-210.	2.2	74

#	Article	IF	CITATIONS
55	Higher production of peripheral blood macrophage migration inhibitory factor in healthy children with a history of mild malaria relative to children with a history of severe malaria. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1033-6.	1.4	10
56	Decreased circulating macrophage migration inhibitory factor (MIF) protein and blood mononuclear cell MIF transcripts in children with Plasmodium falciparum malaria. Clinical Immunology, 2006, 119, 219-225.	3.2	47
57	Increased severe anemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria. Aids, 2006, 20, 275-280.	2.2	117
58	Suppression of Prostaglandin E2by Malaria Parasite Products and Antipyretics Promotes Overproduction of Tumor Necrosis Factor‑α: Association with the Pathogenesis of Childhood Malarial Anemia. Journal of Infectious Diseases, 2006, 193, 1384-1393.	4.0	34
59	Acquisition of Hemozoin by Monocytes Down-Regulates Interleukin-12 p40 (IL-12p40) Transcripts and Circulating IL-12p70 through an IL-10-Dependent Mechanism: In Vivo and In Vitro Findings in Severe Malarial Anemia. Infection and Immunity, 2006, 74, 5249-5260.	2.2	75
60	PARASITEMIA, ANEMIA, AND MALARIAL ANEMIA IN INFANTS AND YOUNG CHILDREN IN A RURAL HOLOENDEMIC PLASMODIUM FALCIPARUM TRANSMISSION AREA. American Journal of Tropical Medicine and Hygiene, 2006, 74, 376-385.	1.4	80
61	Parasitemia, anemia, and malarial anemia in infants and young children in a rural holoendemic Plasmodium falciparum transmission area. American Journal of Tropical Medicine and Hygiene, 2006, 74, 376-85.	1.4	58
62	Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica, 2006, 91, 1396-9.	3 . 5	45
63	Stage-specific effects of Plasmodium falciparum-derived hemozoin on blood mononuclear cell TNF-α regulation and viral replication. Aids, 2005, 19, 1771-1780.	2.2	13
64	Differential Regulation of \hat{l}^2 -Chemokines in Children with Plasmodium falciparum Malaria. Infection and Immunity, 2005, 73, 4190-4197.	2.2	85
65	Reduced Peripheral PGE2 Biosynthesis in Plasmodium falciparum Malaria Occurs through Hemozoin-Induced Suppression of Blood Mononuclear Cell Cyclooxygenase-2 Gene Expression via an Interleukin-10-Independent Mechanism. Molecular Medicine, 2004, 10, 45-54.	4.4	35
66	Hemozoin Differentially Regulates Proinflammatory Cytokine Production in Human Immunodeficiency Virus-Seropositive and -Seronegative Women with Placental Malaria. Infection and Immunity, 2004, 72, 7022-7029.	2.2	24
67	Elevated Nitric Oxide Production in Children with Malarial Anemia: Hemozoin-Induced Nitric Oxide Synthase Type 2 Transcripts and Nitric Oxide in Blood Mononuclear Cells. Infection and Immunity, 2004, 72, 4868-4873.	2.2	87
68	In vivo acquisition of hemozoin by placental blood mononuclear cells suppresses PGE2, TNF-α, and IL-10. Biochemical and Biophysical Research Communications, 2003, 311, 839-846.	2.1	32
69	Glycosylphosphatidylinositol Anchors of <i>Plasmodium falciparum </i> . Journal of Experimental Medicine, 2000, 192, 1563-1576.	8.5	220
70	Low Interleukin-12 Activity in Severe Plasmodium falciparum Malaria. Infection and Immunity, 2000, 68, 3909-3915.	2.2	202
71	Blockade of nitric oxide formation down-regulates cyclooxygenase-2 and decreases PGE2 biosynthesis in macrophages. Journal of Leukocyte Biology, 1999, 65, 792-799.	3.3	82
72	Blood Mononuclear Cell Nitric Oxide Production and Plasma Cytokine Levels in Healthy Gabonese Children with Prior Mild or Severe Malaria. Infection and Immunity, 1999, 67, 4977-4981.	2.2	55

#	Article	IF	CITATIONS
73	Reduction of NOS2 overexpression in rheumatoid arthritis patients treated with anti-tumor necrosis factor ? monoclonal antibody (cA2). Arthritis and Rheumatism, 1998, 41, 2205-2210.	6.7	66
74	Interferon (IFN)-α Activation of Human Blood Mononuclear Cells In Vitro and In Vivo for Nitric Oxide Synthase (NOS) Type 2 mRNA and Protein Expression: Possible Relationship of Induced NOS2 to the Anti–Hepatitis C Effects of IFN-α In Vivo. Journal of Experimental Medicine, 1997, 186, 1495-1502.	8.5	116
75	Coordinate expression of inducible nitric oxide synthase and cyclooxygenase-2 genes in uterine tissues of endotoxin-treated pregnant mice. American Journal of Obstetrics and Gynecology, 1997, 177, 1253-1262.	1.3	43
76	Tumor Necrosis Factor-α Promotes Sustained Cyclooxygenase-2 Expression: Attenuation by Dexamethasone and NSAIDs. Prostaglandins, 1997, 54, 727-743.	1.2	103