Aimee Payne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102693/publications.pdf

Version: 2024-02-01

136885 133188 3,851 74 32 59 h-index citations g-index papers 180 180 180 3842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporal Outcomes after Rituximab Therapy for Pemphigus Vulgaris. Journal of Investigative Dermatology, 2022, 142, 1058-1064.e7.	0.3	9
2	Pemphigus and Pemphigoid: From Disease Mechanisms to Druggable Pathways. Journal of Investigative Dermatology, 2022, 142, 907-914.	0.3	21
3	Establishing cutâ€off values for mild, moderate and severe disease in patients with pemphigus using the Pemphigus Disease Area Index. British Journal of Dermatology, 2021, 184, 975-977.	1.4	2
4	Identifying the required degree of disease clearance to improve quality of life in pemphigus vulgaris. British Journal of Dermatology, 2021, 184, 573-575.	1.4	1
5	Updated international expert recommendations for the management of autoimmune bullous diseases during the COVIDâ€19 pandemic. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e412-e414.	1.3	28
6	B-cell targeted therapies in pemphigus. Italian Journal of Dermatology and Venereology, 2021, 156, .	0.1	1
7	Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. ELife, 2021, 10, .	2.8	21
8	B-cell targeted therapies in pemphigus. Italian Journal of Dermatology and Venereology, 2021, 156, 161-173.	0.1	1
9	Diagnosis and management of pemphigus: Recommendations of an international panel of experts. Journal of the American Academy of Dermatology, 2020, 82, 575-585.e1.	0.6	224
10	Clinical outcome and safety of rituximab therapy for pemphigoid diseases. Journal of the American Academy of Dermatology, 2020, 82, 1237-1239.	0.6	23
11	Custom dental trays with topical corticosteroids for management of gingival lesions of mucous membrane pemphigoid. International Journal of Dermatology, 2020, 59, e211-e213.	0.5	3
12	Comparison of C3d immunohistochemical staining to enzyme-linked immunosorbent assay and immunofluorescence for diagnosis of bullous pemphigoid. Journal of the American Academy of Dermatology, 2020, 83, 172-178.	0.6	11
13	Expert recommendations for the management of autoimmune bullous diseases during the COVID‶9 pandemic. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e302-e303.	1.3	53
14	Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. Journal of Clinical Investigation, 2020, 130, 2451-2464.	3.9	106
15	Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. Journal of Clinical Investigation, 2020, 130, 6317-6324.	3.9	66
16	Detection of underlying dementia in bullous pemphigoid patients using cognitive evaluation tests: a multicenter case-control study. Annals of Translational Medicine, 2020, 8, 1397-1397.	0.7	4
17	Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Reports, 2019, 28, 909-922.e6.	2.9	31
18	Factors Associated With Complete Remission After Rituximab Therapy for Pemphigus. JAMA Dermatology, 2019, 155, 1404.	2.0	42

#	Article	IF	Citations
19	On the mark: genetically engineered immunotherapies for autoimmunity. Current Opinion in Immunology, 2019, 61, 69-73.	2.4	9
20	RPGRIP1L is required for stabilizing epidermal keratinocyte adhesion through regulating desmoglein endocytosis. PLoS Genetics, 2019, 15, e1007914.	1.5	8
21	World Workshop on Oral Medicine <scp>VII</scp> : Immunobiologics for salivary gland disease in Sjögren's syndrome: A systematic review. Oral Diseases, 2019, 25, 102-110.	1.5	16
22	World Workshop of Oral Medicine VII: A systematic review of immunobiologic therapy for oral manifestations of pemphigoid and pemphigus. Oral Diseases, 2019, 25, 111-121.	1.5	13
23	Anti-BP180 Autoantibodies Are Present in Stroke and Recognize Human Cutaneous BP180 and BP180-NC16A. Frontiers in Immunology, 2019, 10, 236.	2.2	10
24	Assessing the Correlation Between Disease Severity Indices and Quality of Life Measurement Tools in Pemphigus. Frontiers in Immunology, 2019, 10, 2571.	2.2	13
25	Increasing the Complement ofÂTherapeutic Options in BullousÂPemphigoid. Journal of Investigative Dermatology, 2018, 138, 246-248.	0.3	10
26	Authors' reply: Paraneoplastic autoimmune multiorgan syndrome and paraneoplastic pemphigus describe the same spectrum of disease pathology. Nature Reviews Disease Primers, 2018, 4, 18013.	18.1	1
27	Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. Journal of Investigative Dermatology, 2018, 138, 32-37.	0.3	113
28	Perspective From the 5th International Pemphigus and Pemphigoid Foundation Scientific Conference. Frontiers in Medicine, 2018, 5, 306.	1.2	27
29	Autoreactive IgG and IgA B Cells Evolve through Distinct Subclass Switch Pathways in the Autoimmune Disease Pemphigus Vulgaris. Cell Reports, 2018, 24, 2370-2380.	2.9	23
30	Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics. Cell Reports, 2017, 18, 237-247.	2.9	49
31	Pemphigus. Nature Reviews Disease Primers, 2017, 3, 17026.	18.1	371
32	Meeting Report of the Pathogenesis of Pemphigus and Pemphigoid Meeting in Munich, September 2016. Journal of Investigative Dermatology, 2017, 137, 1199-1203.	0.3	34
33	The reliability of the Cutaneous Dermatomyositis Disease Area and Severity Index (<scp>CDASI</scp>) among dermatologists, rheumatologists and neurologists. British Journal of Dermatology, 2017, 176, 423-430.	1.4	19
34	Clinical significance of immunoglobulin E in bullous pemphigoid. British Journal of Dermatology, 2017, 177, 13-14.	1.4	2
35	2504. Journal of Clinical and Translational Science, 2017, 1, 10-10.	0.3	0
36	Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers. BMC Medical Education, 2017, 17, 115.	1.0	38

#	Article	IF	Citations
37	Rituximab therapy in pemphigus and other autoantibody-mediated diseases. F1000Research, 2017, 6, 83.	0.8	23
38	Setting the target for pemphigus vulgaris therapy. JCI Insight, 2017, 2, e92021.	2.3	30
39	Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes. JCI Insight, 2017, 2, .	2.3	19
40	Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathogens, 2017, 13, e1006613.	2.1	106
41	Overcoming the Constraints of Anti-HIV/CD89 Bispecific Antibodies That Limit Viral Inhibition. Journal of Immunology Research, 2016, 2016, 1-5.	0.9	8
42	Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. Journal of Immunology, 2016, 197, 1065-1073.	0.4	21
43	Quantifying disease extent in pemphigus. British Journal of Dermatology, 2016, 175, 18-19.	1.4	1
44	Cutaneous autoimmune effects in the setting of therapeutic immune checkpoint inhibition for metastatic melanoma. Journal of Cutaneous Pathology, 2016, 43, 787-791.	0.7	63
45	Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host and Microbe, 2016, 19, 775-787.	5.1	133
46	Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science, 2016, 353, 179-184.	6.0	468
47	Pathogenicity and Epitope Characteristics Do Not Differ in IgG Subclass-Switched Anti-Desmoglein 3 IgG1 and IgG4 Autoantibodies in Pemphigus Vulgaris. PLoS ONE, 2016, 11, e0156800.	1.1	21
48	Reliability and Validity of Cutaneous Sarcoidosis Outcome Instruments Among Dermatologists, Pulmonologists, and Rheumatologists. JAMA Dermatology, 2015, 151, 1317.	2.0	21
49	The dual nature of interleukin-10 in pemphigus vulgaris. Cytokine, 2015, 73, 335-341.	1.4	26
50	Persistence of Anti-Desmoglein 3 IgG + B-Cell Clones in Pemphigus Patients over Years. Journal of Investigative Dermatology, 2015, 135, 742-749.	0.3	83
51	Nanorobotic Investigation Identifies Novel Visual, Structural and Functional Correlates of Autoimmune Pathology in a Blistering Skin Disease Model. PLoS ONE, 2014, 9, e106895.	1.1	17
52	Plakophilins, Desmogleins, and Pemphigus: The Tail Wagging the Dog. Journal of Investigative Dermatology, 2014, 134, 874-876.	0.3	2
53	MAPKAP Kinase 2 (MK2)-Dependent and -Independent Models of Blister Formation in Pemphigus Vulgaris. Journal of Investigative Dermatology, 2014, 134, 68-76.	0.3	47
54	Shared VH1-46 gene usage by pemphigus vulgaris autoantibodies indicates common humoral immune responses among patients. Nature Communications, 2014, 5, 4167.	5.8	63

#	Article	IF	Citations
55	Reliability and Convergent Validity of the Cutaneous Sarcoidosis Activity and Morphology Instrument for Assessing Cutaneous Sarcoidosis. JAMA Dermatology, 2013, 149, 550.	2.0	40
56	Enrichment of total serum IgG4 in patients with pemphigus. British Journal of Dermatology, 2012, 167, 1245-1253.	1.4	59
57	Signaling Dependent and Independent Mechanisms in Pemphigus Vulgaris Blister Formation. PLoS ONE, 2012, 7, e50696.	1.1	89
58	p38 MAPK Activation Is Downstream of the Loss of Intercellular Adhesion in Pemphigus Vulgaris. Journal of Biological Chemistry, 2011, 286, 1283-1291.	1.6	72
59	Autoimmunity to Desmocollin 3 in Pemphigus Vulgaris. American Journal of Pathology, 2010, 177, 2724-2730.	1.9	82
60	Homologous regions of autoantibody heavy chain complementarity-determining region 3 (H-CDR3) in patients with pemphigus cause pathogenicity. Journal of Clinical Investigation, 2010, 120, 4111-4117.	3.9	51
61	Antibodies to the Desmoglein 1 Precursor Proprotein but Not to the Mature Cell Surface Protein Cloned from Individuals without Pemphigus. Journal of Immunology, 2009, 183, 5615-5621.	0.4	31
62	Disruption of Desmosome Assembly by Monovalent Human Pemphigus Vulgaris Monoclonal Antibodies. Journal of Investigative Dermatology, 2009, 129, 908-918.	0.3	60
63	Reliability and Convergent Validity of Two Outcome Instruments for Pemphigus. Journal of Investigative Dermatology, 2009, 129, 2404-2410.	0.3	183
64	The Neutralization Properties of a HIV-Specific Antibody Are Markedly Altered by Glycosylation Events Outside the Antigen-Binding Domain. Journal of Immunology, 2007, 178, 7132-7138.	0.4	37
65	Targeting Pemphigus Autoantibodies through their Heavy-Chain Variable Region Genes. Journal of Investigative Dermatology, 2007, 127, 1681-1691.	0.3	28
66	Cloning and genetic characterization of human pemphigus autoantibodies. Journal of the American Academy of Dermatology, 2006, 55, e2.	0.6	0
67	Pathogenic human monoclonal antibody against desmoglein 3. Clinical Immunology, 2006, 120, 68-75.	1.4	41
68	Dermatologic Toxicity of Chemotherapeutic Agents. Seminars in Oncology, 2006, 33, 86-97.	0.8	70
69	Two Novel TP63 Mutations Associated With the Ankyloblepharon, Ectodermal Defects, and Cleft Lip and Palate Syndrome. Archives of Dermatology, 2005, 141, 1567-73.	1.7	38
70	Dichotomy in cross-clade reactivity and neutralization by HIV-1 sera: Implications for active and passive immunotherapy. Journal of Medical Virology, 2005, 76, 146-152.	2.5	6
71	Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. Journal of Clinical Investigation, 2005, 115, 888-899.	3.9	198
72	Desmosomes and disease: pemphigus and bullous impetigo. Current Opinion in Cell Biology, 2004, 16, 536-543.	2.6	137

AIMEE PAYNE

#	Article	IF	CITATIONS
73	Binding and Neutralization Activity of Human IgG1 and IgG3 from Serum of HIV-Infected Individuals. AIDS Research and Human Retroviruses, 2003, 19, 785-792.	0.5	37
74	Evidence of determinant spreading in the antibody responses to prostate cell surface antigens in patients immunized with prostate-specific antigen. Clinical Cancer Research, 2002, 8, 368-73.	3.2	26