List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regional specialization within the intestinal immune system. Nature Reviews Immunology, 2014, 14, 667-685.	22.7	1,155
2	Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology, 2003, 3, 331-341.	22.7	1,151
3	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	14.5	921
4	Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunology, 2013, 6, 498-510.	6.0	749
5	Oral tolerance to food protein. Mucosal Immunology, 2012, 5, 232-239.	6.0	540
6	The regulation of immune responses to dietary protein antigens. Trends in Immunology, 1987, 8, 93-98.	7.5	493
7	Macrophages in intestinal homeostasis and inflammation. Immunological Reviews, 2014, 260, 102-117.	6.0	466
8	Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, 10, 453-460.	22.7	461
9	The anatomical basis of intestinal immunity. Immunological Reviews, 1997, 156, 145-166.	6.0	446
10	<scp>CD</scp> 64 distinguishes macrophages from dendritic cells in the gut and reveals the <scp>T</scp> h1â€inducing role of mesenteric lymph node macrophages during colitis. European Journal of Immunology, 2012, 42, 3150-3166.	2.9	430
11	Immune responses to dietary antigens: oral tolerance. Trends in Immunology, 1998, 19, 173-181.	7.5	423
12	Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends in Immunology, 2011, 32, 412-419.	6.8	294
13	Intestinal CD103â~' dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunology, 2013, 6, 104-113.	6.0	227
14	Immunomodulatory dendritic cells in intestinal lamina propria. European Journal of Immunology, 2005, 35, 1831-1840.	2.9	212
15	Intestinal macrophages and dendritic cells: what's the difference?. Trends in Immunology, 2014, 35, 270-277.	6.8	201
16	Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Science Translational Medicine, 2018, 10, .	12.4	200
17	Mucosal Macrophages in Intestinal Homeostasis and Inflammation. Journal of Innate Immunity, 2011, 3, 550-564.	3.8	191
18	An Independent Subset of TLR Expressing CCR2-Dependent Macrophages Promotes Colonic Inflammation. Journal of Immunology, 2010, 184, 6843-6854.	0.8	180

#	Article	IF	CITATIONS
19	CD4+ but not CD8+T cells are required for the induction of oral tolerance. International Immunology, 1995, 7, 501-504.	4.0	152
20	CCR2+CD103â^' intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunology, 2015, 8, 327-339.	6.0	140
21	To respond or not to respond — a personal perspective of intestinal tolerance. Nature Reviews Immunology, 2018, 18, 405-415.	22.7	130
22	The monocyte-macrophage axis in the intestine. Cellular Immunology, 2014, 291, 41-48.	3.0	129
23	Biodegradable microparticles for oral immunization. Vaccine, 1993, 11, 149-154.	3.8	121
24	Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function. European Journal of Immunology, 2013, 43, 3098-3107.	2.9	118
25	Barrier-tissue macrophages: functional adaptation to environmental challenges. Nature Medicine, 2017, 23, 1258-1270.	30.7	114
26	Oral tolerance. Seminars in Immunology, 2001, 13, 177-185.	5.6	109
27	Mucosal macrophages and the regulation of immune responses in the intestine. Immunology Letters, 2008, 119, 22-31.	2.5	103
28	Nitric oxide mediates intestinal pathology in graft-vshost disease. European Journal of Immunology, 1992, 22, 2141-2145.	2.9	101
29	Intestinal macrophages – specialised adaptation to a unique environment. European Journal of Immunology, 2011, 41, 2494-2498.	2.9	93
30	Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunology, 2015, 8, 38-48.	6.0	93
31	Oral tolerance and allergic responses to food proteins. Current Opinion in Allergy and Clinical Immunology, 2006, 6, 207-213.	2.3	92
32	Oral Tolerance: Overview and Historical Perspectives. Annals of the New York Academy of Sciences, 2004, 1029, 1-8.	3.8	91
33	ISCOMS — a novel strategy for mucosal immunization?. Trends in Immunology, 1991, 12, 383-385.	7.5	90
34	ILâ€10â€dependent partial refractoriness to Tollâ€like receptor stimulation modulates gut mucosal dendritic cell function. European Journal of Immunology, 2008, 38, 1533-1547.	2.9	89
35	Induction of Th1 and Th2 CD4+ T cell responses by oral or parenteral immunization with ISCOMS. European Journal of Immunology, 1995, 25, 2835-2841.	2.9	88
36	Coeliac disease—a meeting point for genetics, immunology, and protein chemistry. Lancet, The, 2003, 361, 1290-1292.	13.7	87

#	Article	IF	CITATIONS
37	Polarization of Th-cell responses: a phylogenetic consequence of nonspecific immune defence?. Trends in Immunology, 1995, 16, 220-223.	7.5	85
38	Processed MHC class I alloantigen as the stimulus for CD4+ T-cell dependent antibody-mediated graft rejection. Trends in Immunology, 1992, 13, 434-438.	7.5	80
39	Mechanisms of Oral Tolerance. Critical Reviews in Immunology, 1997, 17, 119-137.	0.5	78
40	Analysis of enteropathy induced by tumour necrosis factor \hat{I}_{\pm} . Cytokine, 1993, 5, 24-30.	3.2	76
41	Enteropathy precedes type 1 diabetes in the BB rat. Gut, 2004, 53, 1437-1444.	12.1	69
42	Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunology, 2012, 5, 150-160.	6.0	67
43	The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells. Journal of Immunology, 2006, 176, 3697-3706.	0.8	56
44	Dendritic cells and immune responses to orally administered antigens. Vaccine, 2005, 23, 1797-1799.	3.8	55
45	Oral vaccination with immune stimulating complexes. Immunology Letters, 1999, 65, 133-140.	2.5	54
46	AUGMENTATION OF INTESTINAL AND PERIPHERAL NATURAL KILLER CELL ACTIVITY DURING THE GRAFT-VERSUS-HOST REACTION IN MICE. Transplantation, 1983, 36, 513-519.	1.0	50
47	The mucosal adjuvant effects of cholera toxin and immune-stimulating complexes differ in their requirement for IL-12, indicating different pathways of action. European Journal of Immunology, 1999, 29, 1774-1784.	2.9	48
48	Oral Tolerance and Regulation of Immunity to Dietary Antigens. , 1994, , 185-201.		48
49	The Atypical Chemokine Receptor D6 Contributes to the Development of Experimental Colitis. Journal of Immunology, 2009, 182, 5032-5040.	0.8	46
50	Induction of Oral Tolerance in the Primed Immune System: Influence of Antigen Persistence and Adjuvant Form. Cellular Immunology, 2000, 202, 71-78.	3.0	39
51	Inactivation of Th1 and Th2 Cells by Feeding Ovalbumina. Annals of the New York Academy of Sciences, 1996, 778, 122-132.	3.8	37
52	Simultaneous presentation and crossâ€presentation of immuneâ€stimulating complexâ€associated cognate antigen by antigenâ€specific B cells. European Journal of Immunology, 2008, 38, 1238-1246.	2.9	36
53	The role of antigen-presenting cells and interleukin-12 in the priming of antigen-specific CD4+ T cells by immune stimulating complexes. Immunology, 2003, 110, 95-104.	4.4	35
54	Immune stimulating complexes as mucosal vaccines. Immunology and Cell Biology, 1998, 76, 263-269.	2.3	34

#	Article	IF	CITATIONS
55	Anatomical and Cellular Basis of Immunity and Tolerance in the Intestine. Journal of Pediatric Gastroenterology and Nutrition, 2004, 39, S723-S724.	1.8	34
56	CD200 receptor and macrophage function in the intestine. Immunobiology, 2012, 217, 643-651.	1.9	33
57	Human intraepithelial lymphocytes. Seminars in Immunopathology, 1990, 12, 165-190.	4.0	32
58	Induction of local innate immune responses and modulation of antigen uptake as mechanisms underlying the mucosal adjuvant properties of immune stimulating complexes (ISCOMS). Vaccine, 2002, 20, 2254-2262.	3.8	32
59	Induction of protective and mucosal immunity against diphtheria by a immune stimulating complex (ISCOMS) based vaccine. Vaccine, 2006, 24, 5201-5210.	3.8	32
60	The Role of Dendritic Cells in Regulating Mucosal Immunity and Tolerance. Novartis Foundation Symposium, 2008, 252, 291-305.	1.1	32
61	A genetically determined lack of oral tolerance to ovalbumin is due to failure of the immune system to respond to intestinally derived tolerogen. European Journal of Immunology, 1987, 17, 1673-1676.	2.9	31
62	Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. Journal of Immunology, 2018, 201, 215-229.	0.8	31
63	Differences in the Kinetics, Amplitude, and Localization of ERK Activation in Anergy and Priming Revealed at the Level of Individual Primary T Cells by Laser Scanning Cytometry. Journal of Immunology, 2004, 173, 1579-1586.	0.8	30
64	Immunological Consequences of Intervention in Established Immune Responses by Feeding Protein Antigens. Cellular Immunology, 1998, 183, 137-148.	3.0	28
65	Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3 ⁺ CD8 ⁺ T _{regs} . Science Immunology, 2021, 6, .	11.9	28
66	HYPERSENSITIVITY REACTIONS IN THE SMALL INTESTINE. Transplantation, 1986, 41, 192-198.	1.0	26
67	Dendritic cell maturation enhances CD8+ T-cell responses to exogenous antigen via a proteasome-independent mechanism of major histocompatibility complex class I loading. Immunology, 2003, 109, 374-383.	4.4	25
68	Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103 ⁺ CD11b ⁺ <scp>DC</scp> s in the intestinal lamina propria. European Journal of Immunology, 2014, 44, 3658-3668.	2.9	25
69	Basic mechanisms and clinical implications of oral tolerance. Current Opinion in Gastroenterology, 1999, 15, 546.	2.3	25
70	Immunohistochemical analysis of mucosal gamma-interferon production in coeliac disease Gut, 1992, 33, 1482-1486.	12.1	24
71	A role for dendritic cells in the priming of antigen-specific CD4+ and CD8+ T lymphocytes by immune-stimulating complexes in vivo. International Immunology, 2003, 15, 711-720.	4.0	23
72	Proinflammatory Role of Monocyte-Derived CX3CR1 ^{int} Macrophages in Helicobacter hepaticus-Induced Colitis. Infection and Immunity, 2018, 86, .	2.2	22

#	Article	IF	CITATIONS
73	The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease. Scientific Reports, 2021, 11, 19616.	3.3	21
74	INDUCTION OF INTESTINAL GRAFT-VERSUS-HOST REACTIONS ACROSS MUTANT MAJOR HISTOCOMPATIBILITY ANTIGENS BY T LYMPHOCYTE SUBSETS IN MICE. Transplantation, 1989, 47, 857-863.	1.0	19
75	Induction of Bystander Suppression by Feeding Antigen Occurs despite Normal Clonal Expansion of the Bystander T Cell Population. Journal of Immunology, 2004, 173, 6059-6064.	0.8	17
76	Expression and characterization of $\hat{I}\pm v\hat{I}^25$ integrin on intestinal macrophages. European Journal of Immunology, 2018, 48, 1181-1187.	2.9	17
77	Immunological roles of intestinal mesenchymal cells. Immunology, 2020, 160, 313-324.	4.4	16
78	IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity, 2022, 55, 1431-1447.e11.	14.3	16
79	The influence of follicular migration on T-cell differentiation. Immunology, 2004, 111, 248-251.	4.4	15
80	Inverse Rap1 and Phospho-ERK Expression Discriminate the Maintenance Phase of Tolerance and Priming of Antigen-Specific CD4+ T Cells In Vitro and In Vivo. Journal of Immunology, 2007, 179, 8026-8034.	0.8	15
81	Isolation and Identification of Intestinal Myeloid Cells. Methods in Molecular Biology, 2017, 1559, 223-239.	0.9	15
82	EVIDENCE THAT Ia+ BONE-MARROW-DERIVED CELLS ARE THE STIMULUS FOR THE INTESTINAL PHASE OF THE MURINE GRAFT-VERSUS-HOST REACTION. Transplantation, 1986, 42, 141-143.	1.0	13
83	Oral Tolerance: Physiologic Basis and Clinical Applications. , 2005, , 487-537.		13
84	News & Highlights. Mucosal Immunology, 2010, 3, 420-421.	6.0	12
85	Coeliac disease—a future for peptide therapy?. Lancet, The, 2000, 356, 270-271.	13.7	11
86	Does TLR2 regulate intestinal inflammation?. European Journal of Immunology, 2010, 40, 318-320.	2.9	10
87	Isolation and Identification of Conventional Dendritic Cell Subsets from the Intestine of Mice and Men. Methods in Molecular Biology, 2016, 1423, 101-118.	0.9	10
88	Direct quantitation of T cell signaling by laser scanning cytometry. Journal of Immunological Methods, 2005, 301, 140-153.	1.4	9
89	Historical Perspective: Metchnikoff and the intestinal microbiome. Journal of Leukocyte Biology, 2021, 109, 513-517.	3.3	6
90	Monocytes mediate <i>Salmonella Typhimurium</i> â€induced tumor growth inhibition in a mouse melanoma model. European Journal of Immunology, 2021, 51, 3228-3238.	2.9	6

#	Article	IF	CITATIONS
91	Preparation of Immune Stimulating Complexes (ISCOM s) as Adjuvants. Current Protocols in Immunology, 1995, 16, Unit 2.11.	3.6	3
92	Alternative monocytes settle in for the long term. Nature Immunology, 2017, 18, 599-600.	14.5	3
93	Contrasuppressor cells in mucosal immunity. Trends in Immunology, 1986, 7, 255.	7.5	2
94	Studies on the immunogenicity of an endogenously processed protein antigen in mice. Immunology Letters, 1991, 27, 243-249.	2.5	2
95	Innate Immunity in the Intestine. Journal of Innate Immunity, 2011, 3, 541-542.	3.8	2
96	Janus-like monocytes regulate postoperative ileus. Gut, 2017, 66, 2049-2050.	12.1	2
97	The Intestinal Immune System. , 2016, , 1-12.		1
98	Guardians of the epithelium: macrophages protect against toxic fungal derivatives. Mucosal Immunology, 2021, 14, 542-543.	6.0	1
99	NK cell lineage and target specificity: a unifying concept. Trends in Immunology, 1986, 7, 191.	7.5	0
100	Dendritic Cells Decide CD8+ T Cell Fate. Immunity, 2014, 40, 311-312.	14.3	0
101	Pathogenesis of the Intestinal Phase of the Graft-Versus-Host Reaction inn F1 Hybrid Mice. , 1985, 186, 531-538.		0
102	Clues to the Pathogenesis of Immunologically Mediated Enteropathies from Experimental Studies of Intestinal Graft-versus-Host Reaction. , 1990, , 137-149.		0
103	Immunological Tolerance to Dietary Proteins. , 1990, , 161-172.		0