Julian Avila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2102010/publications.pdf

Version: 2024-02-01

304743 454955 5,556 28 22 30 citations h-index g-index papers 31 31 31 9226 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Human gut bacteria produce Τ-17-modulating bileÂacid metabolites. Nature, 2022, 603, 907-912.	27.8	210
2	An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nature Biomedical Engineering, 2022, 6, 910-921.	22.5	36
3	Intrapersonal Stability of Plasma Metabolomic Profiles over 10 Years among Women. Metabolites, 2022, 12, 372.	2.9	9
4	Targeting a Braf/Mapk pathway rescues podocyte lipid peroxidation in CoQ-deficiency kidney disease. Journal of Clinical Investigation, 2021, 131, .	8.2	25
5	Improving host-directed therapy for tuberculous meningitis by linking clinical and multi-omics data. Tuberculosis, 2021, 128, 102085.	1.9	4
6	Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women. Npj Breast Cancer, 2021, 7, 54.	5.2	15
7	Circulating Lysophosphatidylcholines, Phosphatidylcholines, Ceramides, and Sphingomyelins and Ovarian Cancer Risk: A 23-Year Prospective Study. Journal of the National Cancer Institute, 2020, 112, 628-636.	6.3	34
8	A Prospective Analysis of Circulating Plasma Metabolites Associated with Ovarian Cancer Risk. Cancer Research, 2020, 80, 1357-1367.	0.9	54
9	Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature Medicine, 2019, 25, 1104-1109.	30.7	477
10	Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569, 655-662.	27.8	1,638
11	Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host and Microbe, 2019, 25, 668-680.e7.	11.0	274
12	Variability of Two Metabolomic Platforms in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 40-48.	4.5	31
13	Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nature Microbiology, 2019, 4, 293-305.	13.3	1,094
14	Cerebral tryptophan metabolism and outcome of tuberculous meningitis: an observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 526-535.	9.1	77
15	Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Reports, 2018, 22, 3072-3086.	6.4	159
16	Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature, 2018, 561, 248-252.	27.8	126
17	Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature, 2017, 548, 602-606.	27.8	143
18	Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nature Communications, 2017, 8, 623.	12.8	26

#	Article	IF	CITATIONS
19	Critical roles of mTORC1 signaling and metabolic reprogramming for M-CSF–mediated myelopoiesis. Journal of Experimental Medicine, 2017, 214, 2629-2647.	8.5	42
20	The ubiquitin ligase <scp>SEVEN IN ABSENTIA</scp> (<scp>SINA</scp>) ubiquitinates a defenseâ€related <scp>NAC</scp> transcription factor and is involved in defense signaling. New Phytologist, 2016, 211, 138-148.	7.3	51
21	Revealing disease-associated pathways by network integration of untargeted metabolomics. Nature Methods, 2016, 13, 770-776.	19.0	145
22	Competitive binding of antagonistic peptides fine-tunes stomatal patterning. Nature, 2015, 522, 439-443.	27.8	237
23	The Tomato Cell Death Suppressor Adi3 Is Restricted to the Endosomal System in Response to the Pseudomonas syringae Effector Protein AvrPto. PLoS ONE, 2014, 9, e110807.	2.5	10
24	Two Pdk1 phosphorylation sites on the plant cell death suppressor Adi3 contribute to substrate phosphorylation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1099-1106.	2.3	7
25	Ubiquitination of the tomato cell death suppressor Adi3 by the RING E3 ubiquitin ligase AdBiL. Biochemical and Biophysical Research Communications, 2013, 430, 119-124.	2.1	5
26	The \hat{l}^2 -Subunit of the SnRK1 Complex Is Phosphorylated by the Plant Cell Death Suppressor Adi3 \hat{A} \hat{A} \hat{A} . Plant Physiology, 2012, 159, 1277-1290.	4.8	35
27	Direct Ubiquitination of Pattern Recognition Receptor FLS2 Attenuates Plant Innate Immunity. Science, 2011, 332, 1439-1442.	12.6	510
28	The T-loop Extension of the Tomato Protein Kinase AvrPto-dependent Pto-interacting Protein 3 (Adi3) Directs Nuclear Localization for Suppression of Plant Cell Death. Journal of Biological Chemistry, 2010, 285, 17584-17594.	3.4	32