Ricardo GonzÃ;lez-PinzÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2101682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: Comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach. Chemosphere, 2022, 288, 132489.	8.2	73
2	Wildfires increasingly impact western US fluvial networks. Nature Communications, 2021, 12, 2484.	12.8	39
3	Water quality impacts of urban and non-urban arid-land runoff on the Rio Grande. Science of the Total Environment, 2020, 729, 138443.	8.0	21
4	Introducing the <scp>Selfâ€Cleaning FiLtrAtion</scp> for <scp>Water quaLity SenSors</scp> (<scp>SCâ€FLAWLeSS</scp>) system. Limnology and Oceanography: Methods, 2020, 18, 467-476.	2.0	4
5	Linking Hydrobiogeochemical Processes and Management Techniques to Close Nutrient Loops in an Arid River. Frontiers in Water, 2020, 2, .	2.3	4
6	Long-term data reveal highly-variable metabolism and transitions in trophic status in a montane stream. Freshwater Science, 2020, 39, 241-255.	1.8	8
7	Spatiotemporal Variability in Transport and Reactive Processes Across a First―to Fifthâ€Order Fluvial Network. Water Resources Research, 2020, 56, e2019WR026303.	4.2	6
8	Does the Mass Balance of the Reactive Tracers Resazurin and Resorufin Close at the Microbial Scale?. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005435.	3.0	5
9	Introducing " <i>The Integrator</i> â€! A novel technique to monitor environmental flow systems. Limnology and Oceanography: Methods, 2019, 17, 415-427.	2.0	5
10	Riverbed Sediments Control the Spatiotemporal Variability of E. coli in a Highly Managed, Arid River. Frontiers in Water, 2019, 1, .	2.3	20
11	Less Fine Particle Retention in a Restored Versus Unrestored Urban Stream: Balance Between Hyporheic Exchange, Resuspension, and Immobilization. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1425-1439.	3.0	17
12	The importance of and need for rapid hydrologic assessments in <scp>L</scp> atin <scp>A</scp> merica. Hydrological Processes, 2018, 32, 2441-2451.	2.6	23
13	The Resazurinâ€Resorufin System: Insights From a Decade of "Smart―Tracer Development for Hydrologic Applications. Water Resources Research, 2018, 54, 6877-6889.	4.2	38
14	Tracerâ€based characterization of hyporheic exchange and benthic biolayers in streams. Water Resources Research, 2017, 53, 1575-1594.	4.2	80
15	Reactive Transport of U and V from Abandoned Uranium Mine Wastes. Environmental Science & Technology, 2017, 51, 12385-12393.	10.0	39
16	Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater‧urface Water Exchange in a Meandering River Reach. Geophysical Research Letters, 2017, 44, 11,868.	4.0	28
17	Fine particle retention within stream storage areas at base flow and in response to a storm event. Water Resources Research, 2017, 53, 5690-5705.	4.2	37
18	Advancing the Food-Energy–Water Nexus: Closing Nutrient Loops in Arid River Corridors. Environmental Science & Technology, 2016, 50, 8485-8496.	10.0	36

Ricardo GonzÃilez-Pinzón

#	ARTICLE	IF	CITATIONS
19	Nighttime and daytime respiration in a headwater stream. Ecohydrology, 2016, 9, 93-100.	2.4	21
20	CONTROLS AND CONSEQUENCES OF ENHANCED CHEMICAL REACTIONS AT THE STREAMBED INTERFACE. , 2016, , .		0
21	A FIELD COMPARISON OF MULTIPLE TECHNIQUES TO QUANTIFY SURFACE WATER- GROUNDWATER INTERACTIONS. , 2016, , .		0
22	Comment on "Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams" by Hall et al. (2013). Biogeosciences, 2015, 12, 5365-5369.	3.3	6
23	A field comparison of multiple techniques to quantify groundwater–surface-water interactions. Freshwater Science, 2015, 34, 139-160.	1.8	77
24	Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments. Hydrology and Earth System Sciences, 2014, 18, 3151-3163.	4.9	20
25	Quantifying spatial differences in metabolism in headwater streams. Freshwater Science, 2014, 33, 798-811.	1.8	37
26	Scaling and predicting solute transport processes in streams. Water Resources Research, 2013, 49, 4071-4088.	4.2	37
27	An efficient method to estimate processing rates in streams. Water Resources Research, 2013, 49, 6096-6099.	4.2	15
28	Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams. Freshwater Science, 2013, 32, 622-641.	1.8	80
29	Measuring aerobic respiration in stream ecosystems using the resazurinâ€resorufin system. Journal of Geophysical Research, 2012, 117, .	3.3	79
30	Coupled transport and reaction kinetics control the nitrate sourceâ€sink function of hyporheic zones. Water Resources Research, 2012, 48, .	4.2	158
31	Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams. Environmental Fluid Mechanics, 2008, 8, 597-604.	1.6	21