
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2101057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vitro and In Situ Activity-Based Labeling of Fibroblast Activation Protein with UAMC1110-Derived Probes. Frontiers in Chemistry, 2021, 9, 640566.	1.8	6
2	Prolyl Carboxypeptidase Mediates the C-Terminal Cleavage of (Pyr)-Apelin-13 in Human Umbilical Vein and Aortic Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 6698.	1.8	4
3	The Effect of a Novel Serine Protease Inhibitor on Inflammation and Intestinal Permeability in a Murine Colitis Transfer Model. Frontiers in Pharmacology, 2021, 12, 682065.	1.6	5
4	The C-terminal cleavage of angiotensin II and III is mediated by prolyl carboxypeptidase in human umbilical vein and aortic endothelial cells. Biochemical Pharmacology, 2021, 192, 114738.	2.0	6
5	Proteolytic Cleavage of Bioactive Peptides and Protease-Activated Receptors in Acute and Post-Colitis. International Journal of Molecular Sciences, 2021, 22, 10711.	1.8	6
6	A novel serine protease inhibitor as potential treatment for dry eye syndrome and ocular inflammation. Scientific Reports, 2020, 10, 17268.	1.6	16
7	Metal ions shape α-synuclein. Scientific Reports, 2020, 10, 16293.	1.6	55
8	Selective inhibition of carboxypeptidase U may reduce microvascular thrombosis in rat experimental stroke. Journal of Thrombosis and Haemostasis, 2020, 18, 3325-3335.	1.9	5
9	Effects of Detergent on α-Synuclein Structure: A Native MS-Ion Mobility Study. International Journal of Molecular Sciences, 2020, 21, 7884.	1.8	9
10	The effect of prolyl oligopeptidase inhibitors on alpha-synuclein aggregation and autophagy cannot be predicted by their inhibitory efficacy. Biomedicine and Pharmacotherapy, 2020, 128, 110253.	2.5	17
11	Small molecule 3PO inhibits glycolysis but does not bind to 6â€phosphofructoâ€2â€kinase/fructoseâ€2,6â€bisphosphataseâ€3 (PFKFB3). FEBS Letters, 2020, 594, 3067-307	, 1 .3	20
12	Dysregulated activities of proline-specific enzymes in septic shock patients (sepsis-2). PLoS ONE, 2020, 15, e0231555.	1.1	8
13	Dysregulated activities of proline-specific enzymes in septic shock patients (sepsis-2). , 2020, 15, e0231555.		0
14	Dysregulated activities of proline-specific enzymes in septic shock patients (sepsis-2). , 2020, 15, e0231555.		0
15	Dysregulated activities of proline-specific enzymes in septic shock patients (sepsis-2). , 2020, 15, e0231555.		0
16	Dysregulated activities of proline-specific enzymes in septic shock patients (sepsis-2). , 2020, 15, e0231555.		0
17	Efforts towards an Onâ€Target Version of the Groebke–Blackburn–Bienaymé (GBB) Reaction for Discovery of Druglike Urokinase (uPA) Inhibitors. Chemistry - A European Journal, 2019, 25, 12380-12393.	1.7	11
18	Novel Small Molecule-Derived, Highly Selective Substrates for Fibroblast Activation Protein (FAP). ACS Medicinal Chemistry Letters, 2019, 10, 1173-1179.	1.3	25

#	Article	IF	CITATIONS
19	Selective Activity-Based Probes Targeting Fibroblast Activation Protein (FAP). Proceedings (mdpi), 2019, 22, 84.	0.2	0
20	Spatiotemporal expression and inhibition of prolyl oligopeptidase contradict its involvement in key pathologic mechanisms of kainic acid–induced temporal lobe epilepsy in rats. Epilepsia Open, 2019, 4, 92-101.	1.3	1
21	The development and validation of a combined kinetic fluorometric activity assay for fibroblast activation protein alpha and prolyl oligopeptidase in plasma. Clinica Chimica Acta, 2019, 495, 154-160.	0.5	11
22	Inhibition of the procarboxypeptidase U (proCPU, TAFI, proCPB2) system due to hemolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 878-884.	1.9	9
23	DPP8/DPP9 inhibition elicits canonical Nlrp1b inflammasome hallmarks in murine macrophages. Life Science Alliance, 2019, 2, e201900313.	1.3	47
24	Vibrational Circular Dichroism Sheds New Light on the Competitive Effects of Crowding and β-Synuclein on the Fibrillation Process of α-Synuclein. Biochemistry, 2018, 57, 5989-5995.	1.2	12
25	Prolyl carboxypeptidase activity in the circulation and its correlation with body weight and adipose tissue in lean and obese subjects. PLoS ONE, 2018, 13, e0197603.	1.1	18
26	Newly developed serine protease inhibitors decrease visceral hypersensitivity in a postâ€inflammatory rat model for irritable bowel syndrome. British Journal of Pharmacology, 2018, 175, 3516-3533.	2.7	33
27	Ligand-induced conformational changes in prolyl oligopeptidase: a kinetic approach. Protein Engineering, Design and Selection, 2017, 30, 217-224.	1.0	3
28	Raman optical activity of human <i>α</i> â€synuclein in intrinsically disordered, micelleâ€bound <i>α</i> â€helical, molten globule and oligomeric <i>β</i> â€sheet state. Journal of Raman Spectroscopy, 2017, 48, 910-918.	1.2	36
29	Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling. European Journal of Medicinal Chemistry, 2017, 139, 482-491.	2.6	16
30	Dynamics and ligand-induced conformational changes in human prolyl oligopeptidase analyzed by hydrogen/deuterium exchange mass spectrometry. Scientific Reports, 2017, 7, 2456.	1.6	20
31	Plasma carboxypeptidase U (CPU, CPB2, TAFIa) generation during in vitro clot lysis and its interplay between coagulation and fibrinolysis. Thrombosis and Haemostasis, 2017, 117, 1498-1508.	1.8	11
32	Regulation of intestinal permeability: The role of proteases. World Journal of Gastroenterology, 2017, 23, 2106.	1.4	124
33	The expression of proline-specific enzymes in the human lung. Annals of Translational Medicine, 2017, 5, 130-130.	0.7	17
34	Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules <i>in vitro</i> . Journal of Cell Science, 2016, 129, 3792-3802.	1.2	10
35	Inhibitor screening and enzymatic activity determination for autophagy target Atg4B using a gel electrophoresis-based assay. European Journal of Medicinal Chemistry, 2016, 123, 631-638.	2.6	19
36	Prolyl carboxypeptidase purified from human placenta: its characterization and identification as an apelin-cleaving enzyme. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1481-1488.	1.1	19

#	Article	IF	CITATIONS
37	Dysregulation of the renin-angiotensin system during lung ischemia-reperfusion injury. Experimental Lung Research, 2016, 42, 277-285.	0.5	5
38	Sepsis 2016 Paris. Critical Care, 2016, 20, .	2.5	0
39	Substrate Activity Screening (SAS) and Related Approaches in Medicinal Chemistry. ChemMedChem, 2016, 11, 467-476.	1.6	5
40	Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds. Experimental Eye Research, 2016, 146, 172-178.	1.2	15
41	Probing for improved selectivity with dipeptide-derived inhibitors of dipeptidyl peptidases 8 and 9: the impact of P1-variation. MedChemComm, 2016, 7, 433-438.	3.5	11
42	Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases. World Journal of Gastroenterology, 2016, 22, 10275.	1.4	37
43	Plasma levels of carboxypeptidase U (CPU, CPB2 or TAFIa) are elevated in patients with acute myocardial infarction. Journal of Thrombosis and Haemostasis, 2015, 13, 2227-2232.	1.9	15
44	The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Frontiers in Immunology, 2015, 6, 387.	2.2	147
45	Discovery and SAR of Novel and Selective Inhibitors of Urokinase Plasminogen Activator (uPA) with an Imidazo[1,2-a]pyridine Scaffold. Journal of Medicinal Chemistry, 2015, 58, 9238-9257.	2.9	29
46	The first potent diphenyl phosphonate KLK4 inhibitors with unexpected binding kinetics. MedChemComm, 2015, 6, 1954-1958.	3.5	10
47	Selective inhibitors of fibroblast activation protein (FAP) with a xanthine scaffold. MedChemComm, 2014, 5, 1700-1707.	3.5	16
48	Repositioning the Substrate Activity Screening (SAS) Approach as a Fragmentâ€Based Method for Identification of Weak Binders. ChemBioChem, 2014, 15, 2238-2247.	1.3	7
49	Importance of biofilm formation and dipeptidyl peptidase IV for the pathogenicity of clinical <i>Porphyromonas gingivalis</i> isolates. Pathogens and Disease, 2014, 70, 408-413.	0.8	20
50	Extended Structure–Activity Relationship and Pharmacokinetic Investigation of (4-Quinolinoyl)glycyl-2-cyanopyrrolidine Inhibitors of Fibroblast Activation Protein (FAP). Journal of Medicinal Chemistry, 2014, 57, 3053-3074.	2.9	169
51	Validation of a specific prolylcarboxypeptidase activity assay and its suitability for plasma and serum measurements. Analytical Biochemistry, 2013, 443, 232-239.	1.1	13
52	The potential of carboxypeptidase M as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 265-279.	1.5	24
53	Carboxypeptidase M in apoptosis, adipogenesis and cancer. Clinica Chimica Acta, 2013, 415, 306-316.	0.5	11
54	Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Medicinal Chemistry Letters, 2013, 4, 491-496.	1.3	153

#	Article	IF	CITATIONS
55	Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma. Journal of Histochemistry and Cytochemistry, 2013, 61, 218-235.	1.3	2
56	P2-Substituted <i>N</i> -Acylprolylpyrrolidine Inhibitors of Prolyl Oligopeptidase: Biochemical Evaluation, Binding Mode Determination, and Assessment in a Cellular Model of Synucleinopathy. Journal of Medicinal Chemistry, 2012, 55, 9856-9867.	2.9	24
57	A prolyl oligopeptidase inhibitor, KYPâ€2047, reduces αâ€synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease. British Journal of Pharmacology, 2012, 166, 1097-1113.	2.7	94
58	The effect of prolyl oligopeptidase inhibition on extracellular acetylcholine and dopamine levels in the rat striatum. Neurochemistry International, 2012, 60, 301-309.	1.9	26
59	Method comparison of dipeptidyl peptidase IV activity assays and their application in biological samples containing reversible inhibitors. Clinica Chimica Acta, 2012, 413, 456-462.	0.5	71
60	C-Terminal Clipping of Chemokine CCL1/I-309 Enhances CCR8-Mediated Intracellular Calcium Release and Anti-Apoptotic Activity. PLoS ONE, 2012, 7, e34199.	1.1	18
61	Dipeptidyl Peptidaseâ€IV (DPPIV/CD26)â€Based Prodrugs of Hydroxyâ€Containing Drugs. ChemMedChem, 201 7, 618-628.	.2 1.6	10
62	Synthesis and evaluation of non-basic inhibitors of urokinase-type plasminogen activator (uPA). Bioorganic and Medicinal Chemistry, 2012, 20, 1557-1568.	1.4	19
63	Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3412-3417.	1.0	39
64	In situ prolyl oligopeptidase activity assay in neural cell cultures. Journal of Neuroscience Methods, 2012, 204, 104-110.	1.3	5
65	Translational research on prolyl oligopeptidase inhibitors: the long road ahead. Expert Opinion on Therapeutic Patents, 2011, 21, 977-981.	2.4	17
66	Structure–Activity Relationship Studies on Isoindoline Inhibitors of Dipeptidyl Peptidases 8 and 9 (DPP8, DPP9): Is DPP8-Selectivity an Attainable Goal?. Journal of Medicinal Chemistry, 2011, 54, 5737-5746.	2.9	51
67	Interaction of Prolyl Oligopeptidase with α-Synuclein. CNS and Neurological Disorders - Drug Targets, 2011, 10, 349-354.	0.8	29
68	Structure and Function Relationship in Prolyl Oligopeptidase. CNS and Neurological Disorders - Drug Targets, 2011, 10, 297-305.	0.8	16
69	The dipeptidyl peptidase IV (CD26, EC 3.4.14.5) inhibitor vildagliptin is a potent antihyperalgesic in rats by promoting endomorphin-2 generation in the spinal cord. European Journal of Pharmacology, 2011, 650, 195-199.	1.7	6
70	Dipeptidyl peptidase 9 (DPP9) from bovine testes: Identification and characterization as the short form by mass spectrometry. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 781-788.	1.1	20
71	Dipeptidyl peptidases and related proteins: multifaceted markers and therapeutic targets. Clinical Chemistry and Laboratory Medicine, 2009, 47, 245-7.	1.4	12
72	Dipeptidyl-peptidase IV and B-type natriuretic peptide. From bench to bedside. Clinical Chemistry and Laboratory Medicine, 2009, 47, 248-52.	1.4	55

#	Article	IF	CITATIONS
73	Enzyme Activity and Immunohistochemical Localization of Dipeptidyl Peptidase 8 and 9 in Male Reproductive Tissues. Journal of Histochemistry and Cytochemistry, 2009, 57, 531-541.	1.3	44
74	In vivo profiling of DPP4 inhibitors reveals alterations in collagen metabolism and accumulation of an amyloid peptide in rat plasma. Biochemical Pharmacology, 2009, 77, 228-237.	2.0	27
75	Carboxypeptidase M: Multiple alliances and unknown partners. Clinica Chimica Acta, 2009, 399, 24-39.	0.5	47
76	ECM1 interacts with fibulin-3 and the beta 3 chain of laminin 332 through its serum albumin subdomain-like 2 domain. Matrix Biology, 2009, 28, 160-169.	1.5	48
77	Inhibitors of dipeptidyl peptidase 8 and dipeptidyl peptidase 9. Part 2: Isoindoline containing inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4159-4162.	1.0	65
78	Inhibitors of dipeptidyl peptidase 8 and dipeptidyl peptidase 9. Part 1: Identification of dipeptide derived leads. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4154-4158.	1.0	27
79	DPP4 inhibitors for diabetes—What next?. Biochemical Pharmacology, 2008, 76, 1637-1643.	2.0	55
80	Carboxypeptidase M Expressed by Human Bone Marrow Cells Cleaves the C-Terminal Lysine of Stromal Cell-Derived Factor-1 <i>α</i> : Another Player in Hematopoietic Stem/Progenitor Cell Mobilization?. Stem Cells, 2008, 26, 1211-1220.	1.4	63
81	Prolyl oligopeptidase stimulates the aggregation of α-synuclein. Peptides, 2008, 29, 1472-1478.	1.2	76
82	Purification and characterization of dipeptidyl peptidase IV-like enzymes from bovine testes. Frontiers in Bioscience - Landmark, 2008, Volume, 3558.	3.0	22
83	Dipeptidyl peptidase 8/9-like activity in human leukocytes. Journal of Leukocyte Biology, 2007, 81, 1252-1257.	1.5	63
84	Suggested functions for prolyl oligopeptidase: A puzzling paradox. Clinica Chimica Acta, 2007, 377, 50-61.	0.5	81
85	Small, Potent, and Selective Diaryl Phosphonate Inhibitors for Urokinase-Type Plasminogen Activator with In Vivo Antimetastatic Properties. Journal of Medicinal Chemistry, 2007, 50, 6638-6646.	2.9	52
86	Irreversible Inhibition of Dipeptidyl Peptidase 8 by Dipeptide-Derived Diaryl Phosphonates. Journal of Medicinal Chemistry, 2007, 50, 5568-5570.	2.9	51
87	The role of the S1 binding site of carboxypeptidase M in substrate specificity and turn-over. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 267-277.	1.1	22
88	Efficient conversion of tetrapeptide-based TSAO prodrugs to the parent drug by dipeptidyl-peptidase IV (DPPIV/CD26). Antiviral Research, 2007, 76, 130-139.	1.9	10
89	Diphenyl Phosphonate Inhibitors for the Urokinase-Type Plasminogen Activator:  Optimization of the P4 Position. Journal of Medicinal Chemistry, 2006, 49, 5785-5793.	2.9	34
90	Functional Role of the Conserved Active Site Proline of Triosephosphate Isomeraseâ€,‡. Biochemistry, 2006, 45, 15483-15494.	1.2	37

#	Article	IF	CITATIONS
91	Synthesis and dipeptidyl peptidase inhibition of N-(4-substituted-2,4-diaminobutanoyl)piperidines. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4777-4779.	1.0	7
92	Dipeptidyl peptidase II and leukocyte cell death. Biochemical Pharmacology, 2006, 72, 70-79.	2.0	21
93	Dipeptidyl-Peptidase IV Converts Intact B-Type Natriuretic Peptide into Its des-SerPro Form. Clinical Chemistry, 2006, 52, 82-87.	1.5	178
94	Peptide Substrates of Dipeptidyl Peptidases. Advances in Experimental Medicine and Biology, 2006, 575, 3-18.	0.8	25
95	In Vivo Effects of a Potent, Selective Dppii Inhibitor. Advances in Experimental Medicine and Biology, 2006, 575, 73-85.	0.8	5
96	Kinetic investigation of human dipeptidyl peptidase II (DPPII)-mediated hydrolysis of dipeptide derivatives and its identification as quiescent cell proline dipeptidase (QPP)/dipeptidyl peptidase 7 (DPP7). Biochemical Journal, 2005, 386, 315-324.	1.7	67
97	Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile). Biochemical Pharmacology, 2005, 70, 134-143.	2.0	113
98	Search for substrates for prolyl oligopeptidase in porcine brain. Peptides, 2005, 26, 2536-2546.	1.2	36
99	Fluoro-Olefins as Peptidomimetic Inhibitors of Dipeptidyl Peptidases. Journal of Medicinal Chemistry, 2005, 48, 1768-1780.	2.9	136
100	Exploration of the Active Site of Dipeptidyl Peptidase IV From Porphyromonas gingivalis. Advances in Experimental Medicine and Biology, 2004, 524, 29-35.	0.8	4
101	Dipeptidyl Peptidase IV Substrates. Advances in Experimental Medicine and Biology, 2004, 524, 3-17.	0.8	75
102	Expression, purification and preliminary crystallographic analysis of dipeptidyl peptidase IV fromPorphyromonas gingivalis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1871-1873.	2.5	7
103	γ-Amino-Substituted Analogues of 1-[(S)-2,4-Diaminobutanoyl]piperidine as Highly Potent and Selective Dipeptidyl Peptidase II Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 2906-2916.	2.9	40
104	Development of Irreversible Diphenyl Phosphonate Inhibitors for Urokinase Plasminogen Activator. Journal of Medicinal Chemistry, 2004, 47, 2411-2413.	2.9	60
105	Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences, 2003, 40, 209-294.	2.7	793
106	Development of Potent and Selective Dipeptidyl Peptidase II Inhibitors ChemInform, 2003, 34, no.	0.1	0
107	Prolylisoxazoles: potent inhibitors of prolyloligopeptidase with antitrypanosomal activity. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2875-2878.	1.0	48
108	Rapid Parallel Synthesis of Dipeptide Diphenyl Phosphonate Esters as Inhibitors of Dipeptidyl Peptidases. ACS Combinatorial Science, 2003, 5, 336-344.	3.3	44

#	Article	IF	CITATIONS
109	Design, Synthesis, and SAR of Potent and Selective Dipeptide-Derived Inhibitors for Dipeptidyl Peptidases. Journal of Medicinal Chemistry, 2003, 46, 5005-5014.	2.9	38
110	The Catalytic Cycle of Biosynthetic Thiolase:Â A Conformational Journey of an Acetyl Group through Four Binding Modes and Two Oxyanion Holes‡. Biochemistry, 2002, 41, 15543-15556.	1.2	74
111	Corrigendum to: Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion (FEBS 25376). FEBS Letters, 2002, 512, 353-353.	1.3	0
112	The importance of the conserved Arg191-Asp227 salt bridge of triosephosphate isomerase for folding, stability, and catalysis. FEBS Letters, 2002, 518, 39-42.	1.3	36
113	Presence and release of SR-17 (chromogranin B586–602) in the porcine splenic nerve and its enzymatic degradation by CD26/dipeptidyl peptidase IV. Regulatory Peptides, 2002, 106, 71-79.	1.9	8
114	A kinetic study of glucagon-like peptide-1 and glucagon-like peptide-2 truncation by dipeptidyl peptidase IV, in vitro. Biochemical Pharmacology, 2002, 64, 1753-1756.	2.0	29
115	Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 1: Substitution of the glycine carboxylic acid group. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2553-2556.	1.0	24
116	Development of potent and selective dipeptidyl peptidase II inhibitors. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2825-2828.	1.0	37
117	Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 2: Substitution of the glycine part. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2703-2705.	1.0	19
118	The Noradrenergic Neuron, a Multipeptide Secretory Cell. Advances in Behavioral Biology, 2002, , 107-110.	0.2	0
119	Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Letters, 2001, 507, 327-330.	1.3	102
120	Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood, 2001, 98, 3554-3561.	0.6	227
121	Structural determinants for ligand binding and catalysis of †triosephosphate isomerase. FEBS Journal, 2001, 268, 5189-5196.	0.2	42
122	Kinetic Investigation of Chemokine Truncation by CD26/Dipeptidyl Peptidase IV Reveals a Striking Selectivity within the Chemokine Family. Journal of Biological Chemistry, 2001, 276, 29839-29845.	1.6	249
123	The ionization of a buried glutamic acid is thermodynamically linked to the stability of Leishmania mexicana triose phosphate isomerase. FEBS Journal, 2000, 267, 2516-2524.	0.2	49
124	Molecular characterization of dipeptidyl peptidase activity in serum. FEBS Journal, 2000, 267, 5608-5613.	0.2	242
125	Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Engineering, Design and Selection, 1999, 12, 243-250.	1.0	97
126	Truncation of Macrophage-derived Chemokine by CD26/ Dipeptidyl-Peptidase IV beyond Its Predicted Cleavage Site Affects Chemotactic Activity and CC Chemokine Receptor 4 Interaction. Journal of Biological Chemistry, 1999, 274, 3988-3993.	1.6	142

#	Article	IF	CITATIONS
127	Structureâ^'Activity Relationship of Diaryl Phosphonate Esters as Potent Irreversible Dipeptidyl Peptidase IV Inhibitors. Journal of Medicinal Chemistry, 1999, 42, 1041-1052.	2.9	83
128	Amino-terminal Truncation of Chemokines by CD26/Dipeptidyl-peptidase IV. Journal of Biological Chemistry, 1998, 273, 7222-7227.	1.6	238
129	In vivo inhibition of dipeptidyl peptidase IV activity by pro-pro-diphenyl-phosphonate (prodipine). Biochemical Pharmacology, 1997, 54, 173-179.	2.0	21
130	The effects of CD26/DPP IV-targeted therapy on acute allograft rejection. Transplantation Proceedings, 1997, 29, 1274-1275.	0.3	18
131	A prediction of DPP IV/CD26 domain structure from a physico-chemical investigation of dipeptidyl peptidase IV (CD26) from human seminal plasma. BBA - Proteins and Proteomics, 1997, 1340, 215-226.	2.1	49
132	Pyrrolidides: synthesis and structure-activity relationship as inhibitors of dipeptidyl peptidase IV. European Journal of Medicinal Chemistry, 1997, 32, 301-309.	2.6	34
133	Dipeptide-derived diphenyl phosphonate esters: mechanism-based inhibitors of dipeptidyl peptidase IV. Biochimica Et Biophysica Acta - General Subjects, 1996, 1290, 76-82.	1.1	31
134	Use of immobilized adenosine deaminase (EC 3.5.4.4) for the rapid purification of native human CD26/dipeptidyl peptidase IV (EC 3.4.14.5). Journal of Immunological Methods, 1996, 189, 99-105.	0.6	97
135	Synthesis and evaluation of azaproline peptides as potential inhibitors of dipeptidyl peptidase IV and prolyl oligopeptidase. International Journal of Peptide Research and Therapeutics, 1995, 2, 198-202.	0.1	9
136	A new synthetic method for proline diphenyl phosphonates. Tetrahedron Letters, 1995, 36, 3755-3758.	0.7	17
137	Arginine residues as stabilizing elements in proteins. Biochemistry, 1992, 31, 2239-2253.	1.2	219
138	Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry, 1992, 31, 5449-5458.	1.2	143
139	Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. Biochemistry, 1992, 31, 5467-5471.	1.2	70
140	Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 2. Site-directed mutagenesis of the xylose binding site. Biochemistry, 1992, 31, 5459-5466.	1.2	67
141	The cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. Kinetic properties and comparison with homologous enzymes. FEBS Journal, 1991, 198, 429-435.	0.2	71
142	The adaptability of the active site of trypanosomal triosephosphate isomerase as observed in the crystal structures of three different complexes. Proteins: Structure, Function and Bioinformatics, 1991, 10, 50-69.	1.5	77
143	Glucosephosphate isomerase from Trypanosoma brucei. Cloning and characterization of the gene and analysis of the enzyme. FEBS Journal, 1989, 184, 455-464.	0.2	98
144	Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxide to form compound III. FEBS Journal, 1989, 186, 571-576.	0.2	109

#	Article	IF	CITATIONS
145	Demonstration of glycosomes (microbodies) in the bodonid flagellate Trypanoplasma borelli (protozoa, kinetoplastida). Molecular and Biochemical Parasitology, 1988, 30, 155-163.	0.5	44
146	Preliminary crystallographic studies of glycosomal glyceraldehyde phosphate dehydrogenase from Trypanosoma brucei brucei. Journal of Molecular Biology, 1987, 194, 573-575.	2.0	12
147	On the mechanism of chlorination by chloroperoxidase. Archives of Biochemistry and Biophysics, 1987, 252, 292-302.	1.4	68
148	Rapid spectral scan and stopped-flow studies of carbon monoxide binding to bovine adrenocortical cytochrome P-450scc. BBA - Proteins and Proteomics, 1987, 911, 162-167.	2.1	6
149	Glyceraldehyde-phosphate dehydrogenase from Trypanosoma brucei. Comparison of the glycosomal and cytosolic isoenzymes. FEBS Journal, 1987, 162, 501-507.	0.2	55
150	Kinetics of the oxidation of ascorbic acid, ferrocyanide and p-phenolsulfonic acid by chloroperoxidase compounds I and II. FEBS Journal, 1987, 163, 123-127.	0.2	27
151	Kinetic properties of triose-phosphate isomerase from Trypanosoma brucei brucei. A comparison with the rabbit muscle and yeast enzymes. FEBS Journal, 1987, 168, 69-74.	0.2	93
152	Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. FEBS Journal, 1986, 156, 479-488.	0.2	25
153	Kinetics of cyanide binding by half-reduced Pseudomonas cytochrome c peroxidase. BBA - Proteins and Proteomics, 1985, 828, 67-72.	2.1	5
154	The formation and decay of the oxyferrous forms of the cytochromes P-450 isolated from Rhizobium japonicum. Rapid spectral scan and stopped flow studies. BBA - Proteins and Proteomics, 1985, 828, 144-150.	2.1	10
155	Oxygen binding to dithionite-reduced chloroperoxidase. FEBS Journal, 1985, 147, 93-96.	0.2	28
156	Spectral and kinetic properties of a cationic peroxidase secreted by cultured peanut cells. Canadian Journal of Biochemistry and Cell Biology, 1985, 63, 1086-1092.	1.3	19
157	A rapid-scan spectrometric and stopped-flow study of Compound I and Compound II of Pseudomonas cytochrome c peroxidase. Archives of Biochemistry and Biophysics, 1985, 236, 714-719.	1.4	15
158	A Quantitatiove Desdcription of Microtubule Formadtion in the Presence of Tubulin-Colchicine. FEBS Journal, 1983, 132, 369-373.	0.2	6
159	High-pressure effect on the equilibrium and kinetics of cyanide binding to chloroperoxidase. Biophysical Chemistry, 1983, 18, 195-201.	1.5	4
160	Kinetics of cyanide binding to chloroperoxidase in the presence of nitrate: detection of the influence of a heme-linked acid group by shift in the appa. Journal of Inorganic Biochemistry, 1983, 19, 291-300.	1.5	18
161	A kinetic and spectral study of the alkaline transitions of chloroperoxidase. Archives of Biochemistry and Biophysics, 1983, 220, 549-556.	1.4	21
162	A Quantitative Analysis of Tubulin-Colchicine Binding to Microtubules. FEBS Journal, 1980, 109, 619-624.	0.2	52