Nigam H Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2100759/publications.pdf

Version: 2024-02-01

172 papers

15,302 citations

52 h-index 21521 114 g-index

200 all docs

200 docs citations

times ranked

200

20651 citing authors

#	Article	IF	Citations
1	Characteristics and outcomes of COVID-19 patients with and without asthma from the United States, South Korea, and Europe. Journal of Asthma, 2023, 60, 76-86.	0.9	4
2	Exploring Workplace Testing with Real-Time Polymerase Chain Reaction SARS-CoV-2 Testing. Journal of the American Board of Family Medicine, 2022, 35, 96-101.	0.8	2
3	Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine. Scientific Reports, 2022, 12, 2726.	1.6	24
4	A comparison of approaches to improve worst-case predictive model performance over patient subpopulations. Scientific Reports, 2022, 12, 3254.	1.6	8
5	Using AI to Empower Collaborative Team Workflows: Two Implementations for Advance Care Planning and Care Escalation. NEJM Catalyst, 2022, 3, .	0.4	7
6	DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models. Nature Communications, 2022, 13, 1678.	5.8	9
7	Unraveling COVID-19: A Large-Scale Characterization of 4.5 Million COVID-19 Cases Using CHARYBDIS. Clinical Epidemiology, 2022, Volume 14, 369-384.	1.5	11
8	Evaluating algorithmic fairness in the presence of clinical guidelines: the case of atherosclerotic cardiovascular disease risk estimation. BMJ Health and Care Informatics, 2022, 29, e100460.	1.4	10
9	Monitoring Approaches for a Pediatric Chronic Kidney Disease Machine Learning Model. Applied Clinical Informatics, 2022, 13, 431-438.	0.8	2
10	Nursing Workflow Change in a COVID-19 Inpatient Unit Following the Deployment of Inpatient Telehealth: Observational Study Using a Real-Time Locating System. Journal of Medical Internet Research, 2022, 24, e36882.	2.1	4
11	Net benefit, calibration, threshold selection, and training objectives for algorithmic fairness in healthcare. , 2022, , .		9
12	Automated model versus treating physician for predicting survival time of patients with metastatic cancer. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1108-1116.	2.2	23
13	Language models are an effective representation learning technique for electronic health record data. Journal of Biomedical Informatics, 2021, 113, 103637.	2.5	48
14	An empirical characterization of fair machine learning for clinical risk prediction. Journal of Biomedical Informatics, 2021, 113, 103621.	2.5	64
15	Translational Bioinformatics. , 2021, , 867-911.		O
16	Conflicting information from the Food and Drug Administration: Missed opportunity to lead standards for safe and effective medical artificial intelligence solutions. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1353-1355.	2.2	3
17	COVID-19 in patients with autoimmune diseases: characteristics and outcomes in a multinational network of cohorts across three countries. Rheumatology, 2021, 60, SI37-SI50.	0.9	37
18	ACE: the Advanced Cohort Engine for searching longitudinal patient records. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1468-1479.	2.2	14

#	Article	IF	Citations
19	Ontology-driven weak supervision for clinical entity classification in electronic health records. Nature Communications, 2021, 12, 2017.	5.8	40
20	Thirty-Day Outcomes of Children and Adolescents With COVID-19: An International Experience. Pediatrics, 2021, 148, .	1.0	35
21	Treatment and Monitoring Variability in US Metastatic Breast Cancer Care. JCO Clinical Cancer Informatics, 2021, 5, 600-614.	1.0	5
22	Use of repurposed and adjuvant drugs in hospital patients with covid-19: multinational network cohort study. BMJ, The, 2021, 373, n1038.	3.0	50
23	SARS-CoV-2 infection and COVID-19 severity in individuals with prior seasonal coronavirus infection. Diagnostic Microbiology and Infectious Disease, 2021, 100, 115338.	0.8	25
24	Characteristics and outcomes of 627 044 COVID-19 patients living with and without obesity in the United States, Spain, and the United Kingdom. International Journal of Obesity, 2021, 45, 2347-2357.	1.6	20
25	Characteristics and Outcomes of Over 300,000 Patients with COVID-19 and History of Cancer in the United States and Spain. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1884-1894.	1.1	6
26	Improving hospital readmission prediction using individualized utility analysis. Journal of Biomedical Informatics, 2021, 119, 103826.	2.5	10
27	A survey of extant organizational and computational setups for deploying predictive models in health systems. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2445-2450.	2.2	13
28	Learning decision thresholds for risk stratification models from aggregate clinician behavior. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2258-2264.	2.2	1
29	Systematic Review of Approaches to Preserve Machine Learning Performance in the Presence of Temporal Dataset Shift in Clinical Medicine. Applied Clinical Informatics, 2021, 12, 808-815.	0.8	31
30	Computational drug repositioning of atorvastatin for ulcerative colitis. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 2325-2335.	2.2	10
31	Using Aggregate Patient Data at the Bedside via an On-Demand Consultation Service. NEJM Catalyst, 2021, 2, .	0.4	6
32	A framework for making predictive models useful in practice. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1149-1158.	2.2	36
33	A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nature Medicine, 2021, 27, 1663-1665.	15.2	76
34	An informatics consult approach for generating clinical evidence for treatment decisions. BMC Medical Informatics and Decision Making, 2021, 21, 281.	1.5	8
35	Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups. Journal of the American Heart Association, 2021, 10, e021976.	1.6	15
36	Predictors of diagnostic transition from major depressive disorder to bipolar disorder: a retrospective observational network study. Translational Psychiatry, 2021, 11, 642.	2.4	14

#	Article	IF	Citations
37	An open repository of real-time COVID-19 indicators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	27
38	Characteristics and outcomes of patients with COVID-19 with and without prevalent hypertension: a multinational cohort study. BMJ Open, 2021, 11, e057632.	0.8	8
39	Bridging the implementation gap of machine learning in healthcare. BMJ Innovations, 2020, 6, 45-47.	1.0	77
40	Deep phenotyping of 34,128 adult patients hospitalised with COVID-19 in an international network study. Nature Communications, 2020, 11, 5009.	5.8	86
41	Estimating the efficacy of symptom-based screening for COVID-19. Npj Digital Medicine, 2020, 3, 95.	5.7	65
42	Development and utility assessment of a machine learning bloodstream infection classifier in pediatric patients receiving cancer treatments. BMC Cancer, 2020, 20, 1103.	1.1	5
43	Research and Reporting Considerations for Observational Studies Using Electronic Health Record Data. Annals of Internal Medicine, 2020, 172, S79-S84.	2.0	46
44	Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations. International Journal of Environmental Research and Public Health, 2020, 17, 5929.	1.2	97
45	Developing a delivery science for artificial intelligence in healthcare. Npj Digital Medicine, 2020, 3, 107.	5.7	94
46	Prediction of Major Depressive Disorder Following Beta-Blocker Therapy in Patients with Cardiovascular Diseases. Journal of Personalized Medicine, 2020, 10, 288.	1.1	11
47	Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Science Immunology, 2020, 5, .	5.6	404
48	Development and validation of phenotype classifiers across multiple sites in the observational health data sciences and informatics network. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 877-883.	2.2	14
49	Deep phenotyping: Embracing complexity and temporalityâ€"Towards scalability, portability, and interoperability. Journal of Biomedical Informatics, 2020, 105, 103433.	2.5	51
50	Assessing the accuracy of automatic speech recognition for psychotherapy. Npj Digital Medicine, 2020, 3, 82.	5.7	35
51	Persistent detection of SARS-CoV-2 RNA in patients and healthcare workers with COVID-19. Journal of Clinical Virology, 2020, 129, 104477.	1.6	61
52	Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework. Radiology, 2020, 295, 675-682.	3.6	96
53	MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 2011-2015.	2.2	171
54	Comparative safety and effectiveness of alendronate versus raloxifene in women with osteoporosis. Scientific Reports, 2020, 10, 11115.	1.6	23

#	Article	IF	CITATIONS
55	Estimate the hidden deployment cost of predictive models to improve patient care. Nature Medicine, 2020, 26, 18-19.	15.2	23
56	Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA - Journal of the American Medical Association, 2020, 323, 2085.	3.8	610
57	Making Machine Learning Models Clinically Useful. JAMA - Journal of the American Medical Association, 2019, 322, 1351.	3.8	175
58	Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. JAMA Network Open, 2019, 2, e198719.	2.8	50
59	Profiling off-label prescriptions in cancer treatment using social health networks. JAMIA Open, 2019, 2, 301-305.	1.0	4
60	Key Considerations for Incorporating Conversational AI in Psychotherapy. Frontiers in Psychiatry, 2019, 10, 746.	1.3	56
61	Creating Fair Models of Atherosclerotic Cardiovascular Disease Risk. , 2019, , .		26
62	Medical device surveillance with electronic health records. Npj Digital Medicine, 2019, 2, 94.	5.7	44
63	The number needed to benefit: estimating the value of predictive analytics in healthcare. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 1655-1659.	2.2	39
64	Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e004741.	0.9	40
65	It is time to learn from patients like mine. Npj Digital Medicine, 2019, 2, 16.	5.7	27
66	Finding missed cases of familial hypercholesterolemia in health systems using machine learning. Npj Digital Medicine, 2019, 2, 23.	5.7	72
67	Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicentre cohort study. Lancet Respiratory Medicine, the, 2019, 7, 497-508.	5.2	168
68	Early Detection of Adverse Drug Reactions in Social Health Networks: A Natural Language Processing Pipeline for Signal Detection. JMIR Public Health and Surveillance, 2019, 5, e11264.	1.2	26
69	Performing an Informatics Consult: Methods and Challenges. Journal of the American College of Radiology, 2018, 15, 563-568.	0.9	29
70	Some methods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine, 2018, 37, 1767-1787.	0.8	83
71	Democratizing Health Data for Translational Research. , 2018, , .		2
72	Detecting Chemotherapeutic Skin Adverse Reactions in Social Health Networks Using Deep Learning. JAMA Oncology, 2018, 4, 581.	3.4	9

#	Article	IF	CITATIONS
73	The Impact of Acute Organ Dysfunction on Long-Term Survival in Sepsis*. Critical Care Medicine, 2018, 46, 843-849.	0.4	90
74	What This Computer Needs Is a Physician. JAMA - Journal of the American Medical Association, 2018, 319, 19.	3.8	320
75	Implementing Machine Learning in Health Care â€" Addressing Ethical Challenges. New England Journal of Medicine, 2018, 378, 981-983.	13.9	746
76	U-Index, a dataset and an impact metric for informatics tools and databases. Scientific Data, 2018, 5, 180043.	2.4	7
77	A Second Opinion From Observational Data on Second-line Diabetes Drugs. JAMA Network Open, 2018, 1, e186119.	2.8	3
78	Improving palliative care with deep learning. BMC Medical Informatics and Decision Making, 2018, 18, 122.	1.5	194
79	Call for papers: Deep phenotyping for Precision Medicine. Journal of Biomedical Informatics, 2018, 87, 66-67.	2.5	3
80	Predicting the need for a reduced drug dose, at first prescription. Scientific Reports, 2018, 8, 15558.	1.6	8
81	An evaluation of clinical order patterns machine-learned from clinician cohorts stratified by patient mortality outcomes. Journal of Biomedical Informatics, 2018, 86, 109-119.	2.5	17
82	Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models. Annual Review of Biomedical Data Science, 2018, 1, 53-68.	2.8	136
83	Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018, 1, 18.	5.7	1,440
84	Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations. Scientific Reports, 2018, 8, 5115.	1.6	110
85	Association of Hemoglobin A _{1c} Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin. JAMA Network Open, 2018, 1, e181755.	2.8	54
86	Inferring Physical Function From Wearable Activity Monitors: Analysis of Free-Living Activity Data From Patients With Knee Osteoarthritis. JMIR MHealth and UHealth, 2018, 6, e11315.	1.8	13
87	Inpatient Clinical Order Patterns Machine-Learned From Teaching Versus Attending-Only Medical Services. AMIA Summits on Translational Science Proceedings, 2018, 2017, 226-235.	0.4	3
88	Identifying Cases of Metastatic Prostate Cancer Using Machine Learning on Electronic Health Records. AMIA Annual Symposium proceedings, 2018, 2018, 1498-1504.	0.2	5
89	Predicting patient â€~cost blooms' in Denmark: a longitudinal population-based study. BMJ Open, 2017, 7, e011580.	0.8	32
90	Androgen Deprivation Therapy and Subsequent Dementiaâ€"Reply. JAMA Oncology, 2017, 3, 1001.	3.4	0

#	Article	IF	Citations
91	Research on Gun Violence vs Other Causes of Death. JAMA - Journal of the American Medical Association, 2017, 317, 1379.	3.8	5
92	Funding and Publication of Research on Gun Violence and Other Leading Causes of Death. JAMA - Journal of the American Medical Association, 2017, 317, 84.	3.8	132
93	Assessing Screening Guidelines for Cardiovascular Disease Risk Factors using Routinely Collected Data. Scientific Reports, 2017, 7, 6488.	1.6	2
94	Pharmacovigilance Using Textual Data: The Need to Go Deeper and Wider into the Con(text). Drug Safety, 2017, 40, 1047-1048.	1.4	1
95	A dataset quantifying polypharmacy in the United States. Scientific Data, 2017, 4, 170167.	2.4	90
96	Toward multimodal signal detection of adverse drug reactions. Journal of Biomedical Informatics, 2017, 76, 41-49.	2.5	28
97	Association Between Androgen Deprivation Therapy and Risk of Dementia. JAMA Oncology, 2017, 3, 49.	3.4	129
98	Improving palliative care with deep learning. , 2017, , .		52
99	Machine Learning in Healthcare. , 2017, , 279-291.		77
100	New Paradigms for Patient-Centered Outcomes Research in Electronic Medical Records: An example of detecting urinary incontinence following prostatectomy. EGEMS (Washington, DC), 2017, 4, 1.	2.0	23
101	Quantifying the relative change in physical activity after Total Knee Arthroplasty using accelerometer based measurements. AMIA Summits on Translational Science Proceedings, 2017, 2017, 463-472.	0.4	3
102	Electronic phenotyping with APHRODITE and the Observational Health Sciences and Informatics (OHDSI) data network. AMIA Summits on Translational Science Proceedings, 2017, 2017, 48-57.	0.4	24
103	Generalized enrichment analysis improves the detection of adverse drug events from the biomedical literature. BMC Bioinformatics, 2016, 17, 250.	1.2	9
104	Predictive Modeling of Risk Factors and Complications of Cataract Surgery. European Journal of Ophthalmology, 2016, 26, 328-337.	0.7	40
105	Learning statistical models of phenotypes using noisy labeled training data. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 1166-1173.	2.2	124
106	Evolutionary Pressures on the Electronic Health Record. JAMA - Journal of the American Medical Association, 2016, 316, 923.	3.8	58
107	Characterizing treatment pathways at scale using the OHDSI network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7329-7336.	3.3	256
108	The use of machine learning for the identification of peripheral artery disease and future mortality risk. Journal of Vascular Surgery, 2016, 64, 1515-1522.e3.	0.6	95

#	Article	IF	CITATIONS
109	Androgen Deprivation Therapy and Future Alzheimer's Disease Risk. Journal of Clinical Oncology, 2016, 34, 566-571.	0.8	169
110	Postmarket Surveillance of Point-of-Care Glucose Meters through Analysis of Electronic Medical Records. Clinical Chemistry, 2016, 62, 716-724.	1.5	15
111	An unsupervised learning method to identify reference intervals from a clinical database. Journal of Biomedical Informatics, 2016, 59, 276-284.	2.5	41
112	Statin Intensity or Achieved LDL? Practice-based Evidence for the Evaluation of New Cholesterol Treatment Guidelines. PLoS ONE, 2016, 11, e0154952.	1.1	11
113	Impact of Predicting Health Care Utilization Via Web Search Behavior: A Data-Driven Analysis. Journal of Medical Internet Research, 2016, 18, e251.	2.1	33
114	DISCOVERING PATIENT PHENOTYPES USING GENERALIZED LOW RANK MODELS. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2016, 21, 144-55.	0.7	9
115	Learning Effective Treatment Pathways for Type-2 Diabetes from a clinical data warehouse. AMIA Annual Symposium proceedings, 2016, 2016, 2036-2042.	0.2	6
116	Proton Pump Inhibitor Usage and the Risk of Myocardial Infarction in the General Population. PLoS ONE, 2015, 10, e0124653.	1.1	259
117	Bringing cohort studies to the bedside: framework for a â€~green button' to support clinical decision-making. Journal of Comparative Effectiveness Research, 2015, 4, 191-197.	0.6	43
118	Detecting Unplanned Care From Clinician Notes in Electronic Health Records. Journal of Oncology Practice, 2015, 11, e313-e319.	2.5	26
119	Functional evaluation of out-of-the-box text-mining tools for data-mining tasks. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 121-131.	2.2	37
120	Implications of non-stationarity on predictive modeling using EHRs. Journal of Biomedical Informatics, 2015, 58, 168-174.	2.5	39
121	Proton pump inhibitors and vascular function: A prospective cross-over pilot study. Vascular Medicine, 2015, 20, 309-316.	0.8	38
122	A method for systematic discovery of adverse drug events from clinical notes. Journal of the American Medical Informatics Association: JAMIA, 2015, 22, 1196-1204.	2.2	61
123	Analyzing Information Seeking and Drug-Safety Alert Response by Health Care Professionals as New Methods for Surveillance. Journal of Medical Internet Research, 2015, 17, e204.	2.1	9
124	Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Studies in Health Technology and Informatics, 2015, 216, 574-8.	0.2	533
125	Translational Bioinformatics. , 2014, , 721-754.		1
126	Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art. Drug Safety, 2014, 37, 777-790.	1.4	183

#	Article	IF	CITATIONS
127	A â€~Green Button' For Using Aggregate Patient Data At The Point Of Care. Health Affairs, 2014, 33, 1229-1235.	2.5	140
128	Mining clinical text for signals of adverse drug-drug interactions. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 353-362.	2.2	134
129	Building the graph of medicine from millions of clinical narratives. Scientific Data, 2014, 1, 140032.	2.4	66
130	Automated Detection of Off-Label Drug Use. PLoS ONE, 2014, 9, e89324.	1.1	47
131	Mining the internet for drug information. Clinical Advances in Hematology and Oncology, 2014, 12, 391-3.	0.3	0
132	Mining the ultimate phenome repository. Nature Biotechnology, 2013, 31, 1095-1097.	9.4	26
133	Web-scale pharmacovigilance: listening to signals from the crowd. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 404-408.	2.2	180
134	Profiling risk factors for chronic uveitis in juvenile idiopathic arthritis: a new model for EHR-based research. Pediatric Rheumatology, 2013, 11, 45.	0.9	30
135	Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 413-419.	2.2	152
136	Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, e297-e305.	2.2	51
137	Mining Biomedical Ontologies and Data Using RDF Hypergraphs. , 2013, , .		11
138	Unexpected Effect of Proton Pump Inhibitors. Circulation, 2013, 128, 845-853.	1.6	205
139	Practice-Based Evidence: Profiling the Safety of Cilostazol by Text-Mining of Clinical Notes. PLoS ONE, 2013, 8, e63499.	1.1	69
140	Automated Detection of Systematic Off-label Drug Use in Free Text of Electronic Medical Records. AMIA Summits on Translational Science Proceedings, 2013, 2013, 94-8.	0.4	7
141	Learning signals of adverse drug-drug interactions from the unstructured text of electronic health records. AMIA Summits on Translational Science Proceedings, 2013, 2013, 83-7.	0.4	3
142	Network analysis of unstructured EHR data for clinical research. AMIA Summits on Translational Science Proceedings, 2013, 2013, 14-8.	0.4	4
143	Chapter 9: Analyses Using Disease Ontologies. PLoS Computational Biology, 2012, 8, e1002827.	1.5	17
144	Using ontology-based annotation to profile disease research. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, e177-e186.	2.2	10

#	Article	IF	CITATIONS
145	Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, e149-e156.	2.2	60
146	The National Center for Biomedical Ontology. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, 190-195.	2.2	183
147	The coming age of data-driven medicine: translational bioinformatics' next frontier. Journal of the American Medical Informatics Association: JAMIA, 2012, 19, e2-e4.	2.2	78
148	Annotation Analysis for Testing Drug Safety Signals using Unstructured Clinical Notes. Journal of Biomedical Semantics, 2012, 3, S5.	0.9	81
149	Analyzing patterns of drug use in clinical notes for patient safety. AMIA Summits on Translational Science Proceedings, 2012, 2012, 63-70.	0.4	16
150	Using temporal patterns in medical records to discern adverse drug events from indications. AMIA Summits on Translational Science Proceedings, 2012, 2012, 47-56.	0.4	24
151	NCBO Resource Index: Ontology-based search and mining of biomedical resources. Web Semantics, 2011, 9, 316-324.	2.2	68
152	Enabling enrichment analysis with the Human Disease Ontology. Journal of Biomedical Informatics, 2011, 44, S31-S38.	2.5	44
153	BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Research, 2011, 39, W541-W545.	6.5	590
154	Building a biomedical ontology recommender web service. Journal of Biomedical Semantics, 2010, 1, S1.	0.9	54
155	In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Human Mutation, 2010, 31, 335-346.	1.1	57
156	An ontology-neutral framework for enrichment analysis. AMIA Annual Symposium proceedings, 2010, 2010, 797-801.	0.2	13
157	The Lexicon Builder Web service: Building Custom Lexicons from two hundred Biomedical Ontologies. AMIA Annual Symposium proceedings, 2010, 2010, 587-91.	0.2	10
158	A Comprehensive Analysis of Five Million UMLS Metathesaurus Terms Using Eighteen Million MEDLINE Citations. AMIA Annual Symposium proceedings, 2010, 2010, 907-11.	0.2	26
159	BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research, 2009, 37, W170-W173.	6.5	688
160	Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinformatics, 2009, 10, S1.	1.2	98
161	Comparison of concept recognizers for building the Open Biomedical Annotator. BMC Bioinformatics, 2009, 10, S14.	1.2	112
162	Un service Web pour l'annotation sémantique de données biomédicales avec des ontologies. Informatique Et Santé, 2009, , 151-162.	0.1	2

#	Article	lF	CITATIONS
163	The open biomedical annotator. Summit on Translational Bioinformatics, 2009, 2009, 56-60.	0.7	122
164	Comparison of ontology-based semantic-similarity measures. AMIA Annual Symposium proceedings, 2008, , 384-8.	0.2	20
165	The Stanford Tissue Microarray Database. Nucleic Acids Research, 2007, 36, D871-D877.	6.5	80
166	Biomedical ontologies: a functional perspective. Briefings in Bioinformatics, 2007, 9, 75-90.	3.2	218
167	The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology, 2007, 25, 1251-1255.	9.4	1,955
168	Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics, 2007, 8, 296.	1.2	26
169	Ontology-based annotation and query of tissue microarray data. AMIA Annual Symposium proceedings, 2006, , 709-13.	0.2	19
170	NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources. SSRN Electronic Journal, 0, , .	0.4	2
171	Characteristics and outcomes of COVID-19 patients with COPD from the United States, South Korea, and Europe. Wellcome Open Research, 0, 7, 22.	0.9	0
172	Characteristics and outcomes of COVID-19 patients with COPD from the United States, South Korea, and Europe. Wellcome Open Research, 0, 7, 22.	0.9	1