Juan Aranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2100636/publications.pdf Version: 2024-02-01

Ιπαν Δρανίολ

#	Article	IF	CITATIONS
1	Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2. Chem Catalysis, 2022, 2, 1084-1099.	6.1	20
2	Mutation in KARS: AÂnovel mechanism for severe anaphylaxis. Journal of Allergy and Clinical Immunology, 2021, 147, 1855-1864.e9.	2.9	14
3	DFFR: A New Method for High-Throughput Recalibration of Automatic Force-Fields for Drugs. Journal of Chemical Theory and Computation, 2020, 16, 6598-6608.	5.3	5
4	Glutamine Side-Chain to Main Chain Hydrogen Bonds Can be used to Design Single Alpha-Helices that are Stable at Room Temperature. Biophysical Journal, 2020, 118, 369a-370a.	0.5	0
5	An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nature Catalysis, 2019, 2, 544-552.	34.4	18
6	Side chain to main chain hydrogen bonds stabilize a polyglutamine helix in a transcription factor. Nature Communications, 2019, 10, 2034.	12.8	78
7	Plasticity in oligomerization, operator architecture, and DNA binding in the mode of action of a bacterial B12-based photoreceptor. Journal of Biological Chemistry, 2018, 293, 17888-17905.	3.4	12
8	Molecular Mechanism of Inhibition of DNA Methylation by Zebularine. ACS Catalysis, 2017, 7, 1728-1732.	11.2	7
9	Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA. Physical Chemistry Chemical Physics, 2017, 19, 14695-14701.	2.8	3
10	Regioselectivity of the OH Radical Addition to Uracil in Nucleic Acids. A Theoretical Approach Based on QM/MM Simulations. Journal of Chemical Theory and Computation, 2017, 13, 5089-5096.	5.3	13
11	Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE. PLoS ONE, 2017, 12, e0186286.	2.5	0
12	Unraveling the Reaction Mechanism of Enzymatic C5-Cytosine Methylation of DNA. A Combined Molecular Dynamics and QM/MM Study of Wild Type and Gln119 Variant. ACS Catalysis, 2016, 6, 3262-3276.	11.2	30
13	Mechanism of Sulfur Transfer Across Protein–Protein Interfaces: The Cysteine Desulfurase Model System. ACS Catalysis, 2016, 6, 3975-3984.	11.2	12
14	Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the Bâ€DNA Helix. Chemistry - A European Journal, 2016, 22, 12358-12362.	3.3	34
15	Dynamics and Reactivity in <i>Thermus aquaticus</i> N6-Adenine Methyltransferase. Journal of the American Chemical Society, 2014, 136, 16227-16239.	13.7	22
16	The Catalytic Mechanism of Carboxylesterases: A Computational Study. Biochemistry, 2014, 53, 5820-5829.	2.5	53
17	Modeling methods for studying post-translational and transcriptional modifying enzymes. Current Opinion in Chemical Biology, 2012, 16, 465-471.	6.1	5
18	Substrate promiscuity in DNA methyltransferase M.Pvull. A mechanistic insight. Organic and Biomolecular Chemistry, 2012, 10, 5395.	2.8	8

#	Article	IF	CITATIONS
19	Theoretical Study of the Catalytic Mechanism of DNA-(N4-Cytosine)-Methyltransferase from the Bacterium <i>Proteus vulgaris</i> . Journal of Physical Chemistry B, 2010, 114, 8467-8473.	2.6	10