Milo Shaffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2100357/publications.pdf Version: 2024-02-01

MUO SHAFFED

#	Article	IF	CITATIONS
1	Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 2003, 44, 5893-5899.	3.8	1,540
2	Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40, 5967-5971.	3.8	1,339
3	Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. Advanced Materials, 1999, 11, 937-941.	21.0	1,143
4	Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. Journal of Physical Chemistry B, 1999, 103, 8116-8121.	2.6	910
5	Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices. Advanced Materials, 1999, 11, 1281-1285.	21.0	674
6	Carbon nanotube-based hierarchical composites: a review. Journal of Materials Chemistry, 2010, 20, 4751.	6.7	643
7	Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds. ACS Nano, 2012, 6, 3468-3480.	14.6	625
8	Electrophoretic deposition of carbon nanotubes. Carbon, 2006, 44, 3149-3160.	10.3	624
9	Dispersion and packing of carbon nanotubes. Carbon, 1998, 36, 1603-1612.	10.3	615
10	Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Composites Science and Technology, 2004, 64, 2309-2316.	7.8	571
11	Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chemistry of Materials, 2002, 14, 1610-1613.	6.7	554
12	Carbon Nanotube and Polypyrrole Composites: Coating and Doping. Advanced Materials, 2000, 12, 522-526.	21.0	529
13	Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer, 2005, 46, 877-886.	3.8	490
14	Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 2003, 41, 359-368.	10.3	422
15	Ceramic matrix composites containing carbon nanotubes. Journal of Materials Science, 2009, 44, 1934-1951.	3.7	339
16	Collapse of Single-Wall Carbon Nanotubes is Diameter Dependent. Physical Review Letters, 2004, 92, 095501.	7.8	328
17	Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level. Chemistry of Materials, 2008, 20, 1862-1869.	6.7	312
18	Electrochemical Capacitance of Nanocomposite Films Formed by Coating Aligned Arrays of Carbon Nanotubes with Polypyrrole. Advanced Materials, 2002, 14, 382.	21.0	303

#	Article	IF	CITATIONS
19	Carbon-nanofibre-reinforced poly(ether ether ketone) composites. Composites Part A: Applied Science and Manufacturing, 2002, 33, 1033-1039.	7.6	296
20	A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 2004, 45, 2001-2015.	3.8	293
21	Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Composites Science and Technology, 2009, 69, 1564-1569.	7.8	272
22	Applications of Graphene Electrophoretic Deposition. A Review. Journal of Physical Chemistry B, 2013, 117, 1502-1515.	2.6	246
23	Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules, 2008, 9, 1643-1651.	5.4	226
24	High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles. Chemical Communications, 2007, , 4274.	4.1	218
25	Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science, 2016, 82, 83-117.	32.8	210
26	Multifunctional Structural Supercapacitor Composites Based on Carbon Aerogel Modified High Performance Carbon Fiber Fabric. ACS Applied Materials & Interfaces, 2013, 5, 6113-6122.	8.0	209
27	Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO ₂ Adsorption Capacity. Chemistry of Materials, 2012, 24, 4531-4539.	6.7	205
28	Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1107-1114.	7.6	204
29	Polystyrene grafted multi-walled carbon nanotubes. Chemical Communications, 2002, , 2074-2075.	4.1	187
30	Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chemical Reviews, 2018, 118, 7363-7408.	47.7	182
31	Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 2007, , 513-515.	4.1	179
32	Particle-Stabilized Surfactant-Free Medium Internal Phase Emulsions as Templates for Porous Nanocomposite Materials:Â poly-Pickering-Foams. Langmuir, 2007, 23, 2398-2403.	3.5	169
33	Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry, 2005, 15, 2297.	6.7	167
34	Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD). Journal of the American Ceramic Society, 2005, 88, 980-982.	3.8	156
35	PdIn intermetallic nanoparticles for the Hydrogenation of CO2 to Methanol. Applied Catalysis B: Environmental, 2018, 220, 9-18.	20.2	153
36	Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. Journal of Rheology, 2006, 50, 599-610.	2.6	149

#	Article	IF	CITATIONS
37	Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks. ACS Applied Materials & Interfaces, 2017, 9, 37136-37145.	8.0	148
38	Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. Journal of Materials Chemistry A, 2013, 1, 15300.	10.3	143
39	Hybrid Solar Cells from a Blend of Poly(3â€hexylthiophene) and Ligandâ€Capped TiO ₂ Nanorods. Advanced Functional Materials, 2008, 18, 622-633.	14.9	141
40	Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer, 2009, 50, 5803-5811.	3.8	133
41	Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Physical Review B, 2000, 61, 2286-2290.	3.2	129
42	Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chemical Society Reviews, 2012, 41, 4409.	38.1	129
43	Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: A simple geometric effect. Physical Review B, 2003, 67, .	3.2	128
44	The Electrophoretic Deposition of Inorganic Nanoscaled Materials-A Review Journal of the Ceramic Society of Japan, 2006, 114, 1-14.	1.3	128
45	Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon, 2009, 47, 58-67.	10.3	125
46	Tribological behaviour of carbon-nanofibre-reinforced poly(ether ether ketone). Wear, 2004, 257, 1006-1014.	3.1	124
47	Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers. Advanced Materials, 2008, 20, 3122-3126.	21.0	121
48	Towards the production of large-scale aligned carbon nanotubes. Chemical Physics Letters, 2003, 372, 860-865.	2.6	114
49	Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Scientific Reports, 2017, 7, 42871.	3.3	110
50	Multifunctional structural energy storage composite supercapacitors. Faraday Discussions, 2014, 172, 81-103.	3.2	109
51	Analogies between Polymer Solutions and Carbon Nanotube Dispersions. Macromolecules, 1999, 32, 6864-6866.	4.8	105
52	Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers. ACS Applied Materials & Interfaces, 2016, 8, 31500-31504.	8.0	101
53	The Stability of Silver Nanoparticles in a Model of Pulmonary Surfactant. Environmental Science & Technology, 2013, 47, 11232-11240.	10.0	99
54	Joule Heating Characteristics of Emulsionâ€Templated Graphene Aerogels. Advanced Functional Materials, 2015, 25, 28-35.	14.9	99

#	Article	IF	CITATIONS
55	Carbon nanotube grafted silica fibres: Characterising the interface at the single fibre level. Composites Science and Technology, 2010, 70, 393-399.	7.8	98
56	Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers. Electrochimica Acta, 2016, 222, 44-57.	5.2	97
57	Carbon Nanofibers Allow Foaming of Semicrystalline Poly(ether ether ketone). Advanced Materials, 2005, 17, 2864-2869.	21.0	95
58	Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. Journal of Materials Chemistry, 2008, 18, 1865.	6.7	95
59	Purification of single walled carbon nanotubes: The problem with oxidation debris. Chemical Physics Letters, 2008, 460, 162-167.	2.6	94
60	Dualâ€Mechanism Antimicrobial Polymer–ZnO Nanoparticle and Crystal Violetâ€Encapsulated Silicone. Advanced Functional Materials, 2015, 25, 1367-1373.	14.9	94
61	Impact of Hydrothermal Processing Conditions on High Aspect Ratio Titanate Nanostructures. Chemistry of Materials, 2006, 18, 6059-6068.	6.7	93
62	Layered double hydroxides supported on multi-walled carbon nanotubes: preparation and CO2 adsorption characteristics. Journal of Materials Chemistry, 2012, 22, 13932.	6.7	92
63	Crystallization of Carbon Nanotube and Nanofiber Polypropylene Composites. Journal of Macromolecular Science - Physics, 2003, 42, 479-488.	1.0	88
64	Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. Lab on A Chip, 2007, 7, 167-169.	6.0	88
65	Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chemical Communications, 2006, , 4629.	4.1	86
66	Hierarchically porous carbon foams from pickering high internal phase emulsions. Carbon, 2016, 101, 253-260.	10.3	86
67	Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Composite Interfaces, 2007, 14, 753-762.	2.3	83
68	Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fibre/polymer adhesion. Composites Science and Technology, 2008, 68, 1766-1776.	7.8	83
69	Carbon-nanofibre-reinforced poly(ether ether ketone) fibres. Journal of Materials Science, 2003, 38, 2135-2141.	3.7	81
70	Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chemical Physics Letters, 2004, 384, 98-102.	2.6	81
71	Scalable Method for the Reductive Dissolution, Purification, and Separation of Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 54-62.	14.6	81
72	Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors. Journal of Colloid and Interface Science, 2013, 395, 241-248.	9.4	81

#	Article	IF	CITATIONS
73	Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon, 2007, 45, 2341-2350.	10.3	78
74	Graphene oxide/mixed metal oxide hybrid materials for enhanced adsorption desulfurization of liquid hydrocarbon fuels. Fuel, 2016, 181, 531-536.	6.4	78
75	Pd ₂ Ga-Based Colloids as Highly Active Catalysts for the Hydrogenation of CO ₂ to Methanol. ACS Catalysis, 2017, 7, 1186-1196.	11.2	78
76	Exploring cellular behaviour with multi-walled carbon nanotube constructs. Journal of Materials Chemistry, 2007, 17, 1894.	6.7	77
77	Studies of deposition of and charge storage in polypyrrole–chloride and polypyrrole–carbon nanotube composites with an electrochemical quartz crystal microbalance. Journal of Electroanalytical Chemistry, 2004, 568, 135-142.	3.8	76
78	Single Crystal, Luminescent Carbon Nitride Nanosheets Formed by Spontaneous Dissolution. Nano Letters, 2017, 17, 5891-5896.	9.1	76
79	Mechanistic link between diesel exhaust particles and respiratory reflexes. Journal of Allergy and Clinical Immunology, 2018, 141, 1074-1084.e9.	2.9	75
80	Production of aligned carbon nanotubes by the CVD injection method. Physica B: Condensed Matter, 2002, 323, 339-340.	2.7	73
81	En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Beilstein Journal of Nanotechnology, 2014, 5, 219-233.	2.8	73
82	Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules, 2018, 51, 2466-2475.	4.8	71
83	Encapsulation and Polymerization of White Phosphorus Inside Singleâ€Wall Carbon Nanotubes. Angewandte Chemie - International Edition, 2017, 56, 8144-8148.	13.8	70
84	Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. Journal of Materials Chemistry A, 2018, 6, 1840-1849.	10.3	70
85	Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure. Composites Science and Technology, 2019, 170, 85-92.	7.8	70
86	Mechanical, electrical and microstructural characterisation of multifunctional structural power composites. Journal of Composite Materials, 2015, 49, 1823-1834.	2.4	69
87	Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Composites Science and Technology, 2004, 64, 2325-2331.	7.8	68
88	Synthesis of Pure Phosphorus Nanostructures. Angewandte Chemie - International Edition, 2009, 48, 3616-3621.	13.8	65
89	Synthesis of high purity single-walled carbon nanotubes in high yield. Chemical Communications, 2002, , 2666-2667.	4.1	64
90	Direct Measurement of the Wetting Behavior of Individual Carbon Nanotubes by Polymer Melts: The Key to Carbon Nanotubeâ^'Polymer Composites. Nano Letters, 2008, 8, 2744-2750.	9.1	64

#	Article	IF	CITATIONS
91	Synthesis and characterisation of carbon nanotubes grown on silica fibres by injection CVD. Carbon, 2010, 48, 277-286.	10.3	61
92	Structure and Morphology of Charged Graphene Platelets in Solution by Small-Angle Neutron Scattering. Journal of the American Chemical Society, 2012, 134, 8302-8305.	13.7	60
93	Composition as a Means To Control Morphology and Properties of Epoxy Based Dual-Phase Structural Electrolytes. Journal of Physical Chemistry C, 2014, 118, 28377-28387.	3.1	60
94	Bioactive ceramic coatings containing carbon nanotubes on metallic substrates by electrophoretic deposition. Journal of Materials Science, 2006, 41, 8144-8151.	3.7	59
95	Carbon nanotubes: do they toughen brittle matrices?. Journal of Materials Science, 2011, 46, 4770-4779.	3.7	59
96	Three-Dimensional Internal Order in Multiwalled Carbon Nanotubes Grown by Chemical Vapor Deposition. Advanced Materials, 2005, 17, 760-763.	21.0	58
97	Mesoscale modeling of electrical percolation in fiber-filled systems. Journal of Chemical Physics, 2005, 123, 134702.	3.0	58
98	<i>Grafting from</i> versus <i>Grafting to</i> Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate). Macromolecules, 2017, 50, 7070-7079.	4.8	58
99	Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts. Journal of Biomedical Materials Research - Part A, 2009, 88A, 65-73.	4.0	57
100	Sulfidation of silver nanowires inside human alveolar epithelial cells: a potential detoxification mechanism. Nanoscale, 2013, 5, 9839.	5.6	56
101	Nanocomposite foams obtained by polymerization of high internal phase emulsions. Journal of Polymer Science Part A, 2008, 46, 5708-5714.	2.3	55
102	Multimetallic Microparticles Increase the Potency of Rifampicin against Intracellular <i>Mycobacterium tuberculosis</i> . ACS Nano, 2018, 12, 5228-5240.	14.6	53
103	Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes. Langmuir, 2009, 25, 8340-8348.	3.5	52
104	"Brick-and-Mortar―Nanostructured Interphase for Glass-Fiber-Reinforced Polymer Composites. ACS Applied Materials & Interfaces, 2018, 10, 7352-7361.	8.0	52
105	Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges. International Materials Reviews, 2021, 66, 533-562.	19.3	52
106	Silylation of multi-walled carbon nanotubes. Chemical Physics Letters, 2003, 368, 121-124.	2.6	50
107	Carbon nanotube–nanocrystal heterostructures fabricated by electrophoretic deposition. Nanotechnology, 2008, 19, 195301.	2.6	50
108	Sonochemical degradation of N-methylpyrrolidone and its influence on single walled carbon nanotube dispersion. Chemical Communications, 2015, 51, 16621-16624.	4.1	50

#	Article	IF	CITATIONS
109	Modelling percolation in fibre and sphere mixtures: Routes to more efficient network formation. Composites Science and Technology, 2010, 70, 356-362.	7.8	48
110	Carbon fibre-reinforced poly(ethylene glycol) diglycidylether based multifunctional structural supercapacitor composites for electrical energy storage applications. Journal of Composite Materials, 2016, 50, 2155-2163.	2.4	48
111	Phosphinate stabilised ZnO and Cu colloidal nanocatalysts for CO2 hydrogenation to methanol. Chemical Communications, 2013, 49, 11074.	4.1	47
112	Hybrid effects in graphene oxide/carbon nanotube-supported layered double hydroxides: enhancing the CO2 sorption properties. Carbon, 2017, 123, 616-627.	10.3	47
113	Continuous carbon nanotube synthesis on charged carbon fibers. Composites Part A: Applied Science and Manufacturing, 2018, 112, 525-538.	7.6	47
114	Crystallographic Order in Multi-Walled Carbon Nanotubes Synthesized in the Presence of Nitrogen. Small, 2006, 2, 774-784.	10.0	44
115	Rheological and electrical percolation in melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Chemical Physics Letters, 2009, 482, 105-109.	2.6	44
116	From Organometallic Zinc and Copper Complexes to Highly Active Colloidal Catalysts for the Conversion of CO ₂ to Methanol. ACS Catalysis, 2015, 5, 2895-2902.	11.2	42
117	A one-step route to solubilised, purified or functionalised single-walled carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 16708-16715.	10.3	42
118	Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: Methodologies for hierarchical composites. Nanoscale, 2011, 3, 4759.	5.6	41
119	Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Materials Letters, 2011, 65, 2299-2303.	2.6	41
120	Determining the Morphology and Photocatalytic Activity of Two-Dimensional Anatase Nanoplatelets Using Reagent Stoichiometry. Chemistry of Materials, 2013, 25, 2137-2145.	6.7	41
121	Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants. ACS Omega, 2016, 1, 334-343.	3.5	41
122	Systematic comparison of conventional and reductive single-walled carbon nanotube purifications. Carbon, 2016, 108, 423-432.	10.3	41
123	Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu ₂ 0 Nanoparticles. ACS Nano, 2017, 11, 2714-2723.	14.6	41
124	Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application. Biomaterials, 2014, 35, 4729-4738.	11.4	40
125	Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: a comparison of dimensionality. Chemical Science, 2016, 7, 2916-2923.	7.4	40
126	Mononuclear Phenolate Diamine Zinc Hydride Complexes and Their Reactions With CO ₂ . Organometallics, 2014, 33, 1112-1119.	2.3	39

#	Article	IF	CITATIONS
127	Brominated graphene as a versatile precursor for multifunctional grafting. Chemical Science, 2018, 9, 209-217.	7.4	39
128	Organometallic Route to Surface-Modified ZnO Nanoparticles Suitable for In Situ Nanocomposite Synthesis: Bound Carboxylate Stoichiometry Controls Particle Size or Surface Coverage. Chemistry of Materials, 2012, 24, 2443-2448.	6.7	38
129	Improving the multifunctional behaviour of structural supercapacitors by incorporating chemically activated carbon fibres and mesoporous silica particles as reinforcement. Journal of Composite Materials, 2018, 52, 3085-3097.	2.4	38
130	Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar―interphase. Materials Horizons, 2018, 5, 668-674.	12.2	38
131	Thermosetting hierarchical composites with high carbon nanotube loadings: En route to high performance. Composites Science and Technology, 2016, 127, 134-141.	7.8	37
132	Carbon Nanotube/Nanofibre Polymer Composites. , 2006, , 1-59.		36
133	A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chemical Science, 2010, 1, 603.	7.4	36
134	ELECTROCHEMICAL INVESTIGATION OF THE FORMATION OF CARBON NANOTUBES IN MOLTEN SALTS. High Temperature Material Processes, 1998, 2, 459-469.	0.6	35
135	Optimised exfoliation conditions enhance isolation and solubility of grafted graphenes from graphite intercalation compounds. Journal of Materials Chemistry A, 2014, 2, 15022.	10.3	35
136	Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs. Carbon, 2018, 137, 78-87.	10.3	35
137	MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction. Materials Letters, 2018, 212, 51-53.	2.6	35
138	Fast Exfoliation and Functionalisation of Twoâ€Đimensional Crystalline Carbon Nitride by Framework Charging. Angewandte Chemie - International Edition, 2018, 57, 12656-12660.	13.8	35
139	Sol–gel route to carbon nanotube borosilicate glass composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 837-845.	7.6	34
140	Adsorption of carbon dioxide on graphene oxide supported layered double oxides. Adsorption, 2014, 20, 321-330.	3.0	34
141	Electrophoretic Deposition of Carbon Nanotubes on Metallic Surfaces. Key Engineering Materials, 2006, 314, 141-146.	0.4	33
142	Manufacturing Carbon Nanotube/PVDF Nanocomposite Powders. Macromolecular Materials and Engineering, 2008, 293, 188-193.	3.6	33
143	Pentanuclear Complexes for a Series of Alkylzinc Carboxylates. Organometallics, 2009, 28, 5828-5832.	2.3	33
144	High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires. Environmental Science & amp; Technology, 2013, 47, 13813-13821.	10.0	33

#	Article	IF	CITATIONS
145	Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry. Journal of Materials Chemistry A, 2016, 4, 5385-5389.	10.3	33
146	Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells. Nanoscale, 2015, 7, 10398-10409.	5.6	31
147	Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles. Nature Communications, 2016, 7, 13008.	12.8	31
148	Contamination of holey/lacey carbon films in STEM. Micron, 2012, 43, 450-455.	2.2	30
149	High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells. Biomaterials, 2015, 70, 57-70.	11.4	30
150	Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells. Colloids and Surfaces B: Biointerfaces, 2016, 145, 167-175.	5.0	30
151	Quantification of blood–brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale, 2019, 11, 22054-22069.	5.6	30
152	Mapping the Origins of Luminescence in ZnO Nanowires by STEM-CL. Journal of Physical Chemistry Letters, 2019, 10, 386-392.	4.6	30
153	Electrochemical Processing of Discrete Single-Walled Carbon Nanotube Anions. ACS Nano, 2013, 7, 1769-1778.	14.6	29
154	Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents. Biomacromolecules, 2016, 17, 1845-1853.	5.4	29
155	Nacre-nanomimetics: Strong, Stiff, and Plastic. ACS Applied Materials & Interfaces, 2015, 7, 26783-26791.	8.0	28
156	Applying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition. Nanotechnology, 2017, 28, 305602.	2.6	28
157	Understanding and controlling the covalent functionalisation of graphene. Dalton Transactions, 2020, 49, 10308-10318.	3.3	28
158	Local Structure and Polar Order in Liquid <i>N</i> -Methyl-2-pyrrolidone (NMP). Journal of Physical Chemistry B, 2018, 122, 8963-8971.	2.6	27
159	Deconvolution of the structural and chemical surface properties of carbon nanotubes by inverse gas chromatography. Carbon, 2012, 50, 3416-3421.	10.3	26
160	Influence of Alkali Metals (Na, K, and Cs) on CO ₂ Adsorption by Layered Double Oxides Supported on Graphene Oxide. Industrial & Engineering Chemistry Research, 2015, 54, 11610-11618.	3.7	26
161	Translocation of Functionalized Multi-Walled Carbon Nanotubes across Human Pulmonary Alveolar Epithelium: Dominant Role of Epithelial Type 1 Cells. ACS Nano, 2016, 10, 5070-5085.	14.6	26
162	Carboxylation of multiwalled carbon nanotubes reduces their toxicity in primary human alveolar macrophages. Environmental Science: Nano, 2016, 3, 1340-1350.	4.3	26

#	Article	IF	CITATIONS
163	Encapsulation and Polymerization of White Phosphorus Inside Singleâ€Wall Carbon Nanotubes. Angewandte Chemie, 2017, 129, 8256-8260.	2.0	26
164	Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. Journal of Materials Science, 2013, 48, 5590-5595.	3.7	25
165	Probing the charging mechanisms of carbon nanomaterial polyelectrolytes. Faraday Discussions, 2014, 172, 311-325.	3.2	25
166	Layered Double Oxides Supported on Graphene Oxide for CO ₂ Adsorption: Effect of Support and Residual Sodium. Industrial & Engineering Chemistry Research, 2015, 54, 6781-6792.	3.7	25
167	Production of Carbon Nanofibers in High Yields Using a Sodium Chloride Support. Journal of Physical Chemistry B, 2005, 109, 16665-16670.	2.6	24
168	A one-step Cu/ZnO quasi-homogeneous catalyst for DME production from syn-gas. Catalysis Science and Technology, 2016, 6, 4389-4397.	4.1	24
169	Growth of Single-Walled Carbon Nanotubes by the Rapid Heating of a Supported Catalyst. Chemistry of Materials, 2004, 16, 5637-5643.	6.7	23
170	Aligned carbon nanotube-polystyrene composites prepared by in situ polymerisation of stacked layers. Composites Science and Technology, 2011, 71, 1606-1611.	7.8	23
171	Exploring Carbon Nanomaterial Diversity for Nucleation of Protein Crystals. Scientific Reports, 2016, 6, 20053.	3.3	23
172	Layered zinc hydroxide monolayers by hydrolysis of organozincs. Chemical Science, 2018, 9, 2135-2146.	7.4	23
173	Oneâ€Ðimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Singleâ€Wall Carbon Nanotubes. Angewandte Chemie - International Edition, 2018, 57, 11649-11653.	13.8	23
174	One-pot, in situ synthesis of ZnO-carbon nanotube–epoxy resin hybrid nanocomposites. Chemical Communications, 2009, , 4034.	4.1	22
175	Activation and local structural stability during the thermal decomposition of Mg/Al-hydrotalcite by total neutron scattering. Journal of Materials Chemistry, 2011, 21, 15479.	6.7	22
176	Colloidal Cu/ZnO catalysts for the hydrogenation of carbon dioxide to methanol: investigating catalyst preparation and ligand effects. Catalysis Science and Technology, 2017, 7, 3842-3850.	4.1	22
177	Electrophoretic deposition and characterization of Eu2O3 nanocrystal—Carbon nanotube heterostructures. Journal of the European Ceramic Society, 2010, 30, 1145-1150.	5.7	21
178	Static and Dynamic Microscopy of the Chemical Stability and Aggregation State of Silver Nanowires in Components of <i>Murine</i> Pulmonary Surfactant. Environmental Science & Technology, 2015, 49, 8048-8056.	10.0	21
179	Antibacterial Surfaces with Activity against Antimicrobial Resistant Bacterial Pathogens and Endospores. ACS Infectious Diseases, 2020, 6, 939-946.	3.8	21
180	Solvent Dependence of the Structure of Ethylzinc Acetate and Its Application in CO2/Epoxide Copolymerization. Organometallics, 2011, 30, 2223-2229.	2.3	20

#	Article	IF	CITATIONS
181	Exploring the pseudo-ductility of aligned hybrid discontinuous composites using controlled fibre-type arrangements. Composites Part A: Applied Science and Manufacturing, 2018, 107, 592-606.	7.6	20
182	Structural Power Performance Targets for Future Electric Aircraft. Energies, 2021, 14, 6006.	3.1	20
183	Thermosetting nanocomposites with high carbon nanotube loadings processed by a scalable powder based method. Composites Science and Technology, 2016, 127, 62-70.	7.8	19
184	Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids. Chemical Communications, 2016, 52, 1934-1937.	4.1	19
185	The liquid structure of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Molecular Physics, 2019, 117, 3353-3363.	1.7	19
186	Morphology and properties of injection-moulded carbon-nanofibre poly(etheretherketone) foams. Journal of Materials Science, 2009, 44, 1427-1434.	3.7	18
187	Reductive dissolution of supergrowth carbon nanotubes for tougher nanocomposites by reactive coagulation spinning. Nanoscale, 2017, 9, 8764-8773.	5.6	18
188	HOMO–LUMO coupling: the fourth rule for highly effective molecular rectifiers. Nanoscale, 2017, 9, 8119-8125.	5.6	18
189	One-Dimensional Pnictogen Allotropes inside Single-Wall Carbon Nanotubes. Inorganic Chemistry, 2019, 58, 15216-15224.	4.0	18
190	Nanocomposite coatings obtained by electrophoretic co-deposition of poly(etheretherketone)/graphene oxide suspensions. Journal of Materials Science, 2020, 55, 8881-8899.	3.7	18
191	Mechanical and Thermal Properties of CNT and CNF Reinforced Polymer Composites. AIP Conference Proceedings, 2002, , .	0.4	17
192	Giant cationic polyelectrolytes generated via electrochemical oxidation of single-walled carbon nanotubes. Nature Communications, 2013, 4, 1989.	12.8	17
193	Self-condensation of acetone over Mg–Al layered double hydroxide supported on multi-walled carbon nanotube catalysts. Journal of Molecular Catalysis A, 2015, 398, 50-57.	4.8	17
194	Chemical routes to discharging graphenides. Nanoscale, 2017, 9, 3150-3158.	5.6	17
195	Inorganic Nanotube Mesophases Enable Strong Self-Healing Fibers. ACS Nano, 2020, 14, 5570-5580.	14.6	17
196	Conceptual Multifunctional Design, Feasibility and Requirements for Structural Power in Aircraft Cabins. Journal of Aircraft, 2021, 58, 677-687.	2.4	17
197	Defect-Free Single-Layer Graphene by 10 s Microwave Solid Exfoliation and Its Application for Catalytic Water Splitting. ACS Applied Materials & amp; Interfaces, 2021, 13, 28600-28609.	8.0	17
198	The influence of reagent stoichiometry on the yield and aspect ratio of acid-oxidised injection CVD-grown multi-walled carbon nanotubes. Carbon, 2012, 50, 3967-3976.	10.3	16

#	Article	IF	CITATIONS
199	Mechanical, electrochemical and multifunctional performance of a CFRP/carbon aerogel structural supercapacitor and its corresponding monofunctional equivalents. Multifunctional Materials, 2022, 5, 025002.	3.7	16
200	Self-cleaning anatase nanorods: photocatalytic removal of structure directing agents and subsequent surface modification. Journal of Materials Chemistry, 2008, 18, 3448.	6.7	15
201	An investigation of the carbon nanotube – Lipid interface and its impact upon pulmonary surfactant lipid function. Biomaterials, 2015, 55, 24-32.	11.4	15
202	Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. Journal of Microscopy, 2016, 261, 157-166.	1.8	15
203	Matrix-graded and fibre-steered composites to tackle stress concentrations. Composite Structures, 2019, 207, 72-80.	5.8	15
204	Shear-induced crystallisation of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally controlled composites. Materials Letters, 2014, 116, 53-56.	2.6	14
205	Systematic comparison of single-walled carbon nanotube/poly(vinyl acetate) graft-to reactions. Polymer, 2017, 133, 263-271.	3.8	14
206	Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework Charging. Angewandte Chemie, 2018, 130, 12838-12842.	2.0	14
207	Two-stage, non-hydrolytic synthesis for improved control of TiO2 nanorod formation. Journal of Materials Chemistry, 2012, 22, 12172.	6.7	13
208	Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140038.	4.0	13
209	The influence of fabrication parameters on the electrochemical performance of multifunctional structural supercapacitors. Multifunctional Materials, 2021, 4, 034001.	3.7	13
210	Mapping functional groups on oxidised multi-walled carbon nanotubes at the nanometre scale. Chemical Communications, 2014, 50, 6744-6747.	4.1	12
211	Rectification and negative differential resistance via orbital level pinning. Scientific Reports, 2018, 8, 9120.	3.3	12
212	High-throughput screening for carbon nanotube production. Carbon, 2004, 42, 101-110.	10.3	11
213	Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles. Environmental Sciences: Processes and Impacts, 2016, 18, 1333-1342.	3.5	11
214	Thermal Decomposition of Ternary Sodium Graphite Intercalation Compounds. Chemistry - A European Journal, 2020, 26, 6545-6553.	3.3	11
215	A residual performance methodology to evaluate multifunctional systems. Multifunctional Materials, 2020, 3, 025002.	3.7	11
216	An Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopic Study of Gas Adsorption on Colloidal Stearate-Capped ZnO Catalyst Substrate. Applied Spectroscopy, 2014, 68, 88-94.	2.2	10

#	Article	IF	CITATIONS
217	Property and Shape Modulation of Carbon Fibers Using Lasers. ACS Applied Materials & Interfaces, 2016, 8, 16351-16358.	8.0	10
218	Optimized microstructures for multifunctional structural electrolytes. Multifunctional Materials, 2019, 2, 045001.	3.7	10
219	Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol. Journal of Materials Chemistry A, 2020, 8, 11282-11291.	10.3	10
220	Biphasic epoxy-ionic liquid structural electrolytes: minimising feature size through cure cycle and multifunctional block-copolymer addition. Multifunctional Materials, 2021, 4, 035003.	3.7	10
221	Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 21703-21712.	3.1	9
222	Label-Free Time-of-Flight Secondary Ion Mass Spectrometry Imaging of Sulfur-Producing Enzymes inside Microglia Cells following Exposure to Silver Nanowires. Analytical Chemistry, 2019, 91, 11098-11107.	6.5	9
223	Reductive processing of single walled carbon nanotubes for high volumetric performance supercapacitors. Materials Advances, 2021, 2, 1981-1992.	5.4	9
224	Direct dispersion of SWNTs in highly conductive solvent-enhanced PEDOT:PSS films. Nanocomposites, 2016, 2, 135-140.	4.2	8
225	Elliottet al.Reply:. Physical Review Letters, 2004, 93, .	7.8	7
226	Electrophoretic Deposition of Carbon Nanotubes (CNTs) and CNT/Nanoparticle Composites. Nanostructure Science and Technology, 2012, , 157-179.	0.1	7
227	Aqueous dispersions of oligomer-grafted carbon nanomaterials with controlled surface charge and minimal framework damage. Faraday Discussions, 2014, 173, 273-285.	3.2	7
228	Vapour-liquid-solid growth of ZnO-ZnMgO core–shell nanowires by gold-catalysed molecular beam epitaxy. Nanotechnology, 2019, 30, 194001.	2.6	7
229	Direct Organometallic Synthesis of Carboxylate Intercalated Layered Zinc Hydroxides for Fully Exfoliated Functional Nanosheets. Advanced Functional Materials, 2021, 31, 2102631.	14.9	7
230	Effect of silver nanospheres and nanowires on human airway smooth muscle cells: role of sulfidation. Nanoscale Advances, 2020, 2, 5635-5647.	4.6	7
231	Real-time mechanistic study of carbon nanotube anion functionalisation through open circuit voltammetry. Chemical Science, 2019, 10, 3300-3306.	7.4	6
232	Designing Structural Electrochemical Energy Storage Systems: A Perspective on the Role of Device Chemistry. Frontiers in Chemistry, 2021, 9, 810781.	3.6	6
233	Synthesis of oriented arrays of TiO2 nanorods via a high temperature conversion of carbon nanotubes. Chemical Communications, 2007, , 4378.	4.1	5
234	Applications, composites, and devices: general discussion. Faraday Discussions, 2014, 173, 429-443.	3.2	5

#	Article	IF	CITATIONS
235	Diamond Rings or Dumbbells: Controlling the Structure of Poly(ethylene glycol)–Fullerene [60] Adducts by Varying Linking Chain Length. Macromolecules, 2014, 47, 4870-4875.	4.8	5
236	Probing the size dependence on the optical modes of anatase nanoplatelets using STEM-EELS. Nanoscale, 2016, 8, 9727-9735.	5.6	5
237	Rapid quantitative mapping of multi-walled carbon nanotube concentration in nanocomposites. Composites Science and Technology, 2018, 160, 161-168.	7.8	5
238	Depleting Depletion: Maintaining Single-Walled Carbon Nanotube Dispersions after Graft-To Polymer Functionalization. Langmuir, 2018, 34, 15396-15402.	3.5	5
239	Continuous Binder-Free Fibers of Pure Imogolite Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 17940-17947.	8.0	5
240	Effect of graphene flake size on functionalisation: quantifying reaction extent and imaging locus with single Pt atom tags. Chemical Science, 2021, 12, 14907-14919.	7.4	5
241	High- <i>k</i> dielectric screen-printed inks for mechanical energy harvesting devices. Materials Advances, 2022, 3, 1780-1790.	5.4	5
242	Doping and Theory: general discussion. Faraday Discussions, 2014, 173, 233-256.	3.2	4
243	The many faces of carbon in electrochemistry: general discussion. Faraday Discussions, 2014, 172, 117-137.	3.2	4
244	"Binary salt―of hexaneâ€1,6â€diaminium adipate and "carbon nanotubate―as a synthetic precursor of carbon nanotube/Nylonâ€6,6 hybrid materials. Polymer Composites, 2014, 35, 523-529.	4.6	4
245	Antimicrobial Surfaces: Dualâ€Mechanism Antimicrobial Polymer–ZnO Nanoparticle and Crystal Violetâ€Encapsulated Silicone (Adv. Funct. Mater. 9/2015). Advanced Functional Materials, 2015, 25, 1366-1366.	14.9	4
246	Synthesis and characterization of branched fullerene-terminated poly(ethylene glycol)s. Polymer Chemistry, 2015, 6, 1056-1065.	3.9	4
247	Thermochemical functionalisation of graphenes with minimal framework damage. Chemical Science, 2017, 8, 6149-6154.	7.4	4
248	Grapheneâ \in Based Nucleants for Protein Crystallization. Advanced Functional Materials, 2022, 32, .	14.9	4
249	Synthesis of epoxidized poly(ester carbonate)- <i>b</i> -polyimide- <i>b</i> -poly(ester carbonate): reactive single-walled carbon nanotube dispersants enable synergistic reinforcement around multi-walled nanotube-grafted carbon fibers. Polymer Chemistry, 2019, 10, 1324-1334.	3.9	3
250	Scalable Sacrificial Templating to Increase Porosity and Platinum Utilisation in Graphene-Based Polymer Electrolyte Fuel Cell Electrodes. Nanomaterials, 2021, 11, 2530.	4.1	3
251	Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices. , 1999, 11, 1281.		3
252	High-Speed Imaging of the Ultrasonic Deagglomeration of Carbon Nanotubes in Water. Jom, 2022, 74, 2470-2483.	1.9	3

#	Article	IF	CITATIONS
253	The Effect of Nanotube Loading and Dispersion on the Three-Dimensional Nanostructure of Carbon Nanotube-Conducting Polymer Composite Films. Materials Research Society Symposia Proceedings, 2002, 739, 531.	0.1	2
254	Synthesis in gas and liquid phase: general discussion. Faraday Discussions, 2014, 173, 115-135.	3.2	2
255	Investigating the Origin of Luminescence in Zinc Oxide Nanostructures With STEM-Cathodoluminescence. Microscopy and Microanalysis, 2015, 21, 1257-1258.	0.4	2
256	Oneâ€Dimensional Arsenic Allotropes: Polymerization of Yellow Arsenic Inside Singleâ€Wall Carbon Nanotubes. Angewandte Chemie, 2018, 130, 11823-11827.	2.0	2
257	Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. , 1999, 11, 937.		2
258	Carbon Nanotube and Polypyrrole Composites: Coating and Doping. , 2000, 12, 522.		2
259	Doping and Electrochemical Capacitance of Carbon Nanotube-Polypyrrole Composite Films. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	1
260	Percolation in Multi-Wall Carbon Nanotube-Epoxy Composites Influence of processing parameters, nanotube aspect ratio and electric fields on the bulk conductivity. Materials Research Society Symposia Proceedings, 2003, 788, 2101.	0.1	1
261	Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion. Faraday Discussions, 2014, 172, 497-520.	3.2	1
262	Carbon-Nanofibre-Filled Thermoplastic Composites. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	0
263	Achieving electrical percolation in polymer-carbon nanotube composites. Materials Research Society Symposia Proceedings, 2003, 788, 581.	0.1	0
264	Characterizing the Dopant Behavior of Functionalized Carbon Nanotubes in Conducting Polymers. Materials Research Society Symposia Proceedings, 2003, 788, 12111.	0.1	0
265	Carbon Nanotube and Nanofibre Reinforced Polyamide-12 Fibres. Materials Research Society Symposia Proceedings, 2003, 791, 1.	0.1	0
266	Production of Carbon Nanofibers in High Yields Using a Sodium Chloride Support ChemInform, 2005, 36, no.	0.0	0
267	Electrical Percolation in Carbon Nanotube Dispersions: A Mesoscale Modeling and Experimental Study. Materials Research Society Symposia Proceedings, 2006, 920, 1.	0.1	0
268	Effect of Aggregation on the Rheological Properties of Carbon Nanotube Dispersions. Materials Research Society Symposia Proceedings, 2006, 953, 9.	0.1	0
269	Crystallographic Order in Multi-Walled Carbon Nanotubes Synthesized in the Presence of Nitrogen. Small, 2008, 4, 306-306.	10.0	0
270	Functionalisation, separation and solvation: general discussion. Faraday Discussions, 2014, 173, 337-349.	3.2	0

#	Article	IF	CITATIONS
271	Electron Microscopic Characterization of Functionalized Multi-Walled Carbon Nanotubes and Their Interactions with the Blood Brain Barrier. Microscopy and Microanalysis, 2014, 20, 1744-1745.	0.4	0
272	Semi-Automated DigitalMicrograph Routine for Real-Time Phase Identification. Microscopy and Microanalysis, 2015, 21, 1667-1668.	0.4	0
273	Reactive coagulation of single-walled carbon nanotubes for tougher composites – Solution processing and assembly. AIP Conference Proceedings, 2019, , .	0.4	0
274	Layered Zinc Hydroxides: Direct Organometallic Synthesis of Carboxylate Intercalated Layered Zinc Hydroxides for Fully Exfoliated Functional Nanosheets (Adv. Funct. Mater. 30/2021). Advanced Functional Materials, 2021, 31, 2170218.	14.9	0
275	Spacers to Improve Performance and Porosity of Graphene Based Polymer Electrolyte Fuel Cells. ECS Transactions, 2020, 98, 141-146.	0.5	0