
## Janelle M P Pakan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2100316/publications.pdf Version: 2024-02-01



IANELLE M D DAKAN

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Optical Fiber-Based Recording of Climbing Fiber Ca2+ Signals in Freely Behaving Mice. Biology, 2022, 11, 907.                                                                                                           | 2.8  | 1         |
| 2  | A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation.<br>Neuron, 2021, 109, 2326-2338.e8.                                                                                       | 8.1  | 63        |
| 3  | Enhanced modulation of cell-type specific neuronal responses in mouse dorsal auditory field during locomotion. Cell Calcium, 2021, 96, 102390.                                                                          | 2.4  | 10        |
| 4  | Visual plasticity: Illuminating the role of the hippocampus in cortical sensory encoding. Current Biology, 2021, 31, R1087-R1089.                                                                                       | 3.9  | 0         |
| 5  | Context value updating and multidimensional neuronal encoding in the retrosplenial cortex. Nature Communications, 2021, 12, 6045.                                                                                       | 12.8 | 8         |
| 6  | Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex. Current<br>Biology, 2020, 30, 1866-1880.e5.                                                                                     | 3.9  | 83        |
| 7  | Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas.<br>ELife, 2020, 9, .                                                                                              | 6.0  | 37        |
| 8  | In-vivo deep-brain imaging through a single fibre endoscope (Conference Presentation). , 2019, , .                                                                                                                      |      | 0         |
| 9  | Action and learning shape the activity of neuronal circuits in the visual cortex. Current Opinion in Neurobiology, 2018, 52, 88-97.                                                                                     | 4.2  | 90        |
| 10 | High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light: Science and Applications, 2018, 7, 92.                                                                                             | 16.6 | 211       |
| 11 | Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice. Handbook of<br>Behavioral Neuroscience, 2018, , 235-251.                                                                                | 0.7  | 3         |
| 12 | The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex. Cell Reports, 2018, 24, 2521-2528.                                     | 6.4  | 61        |
| 13 | FISSA: A neuropil decontamination toolbox for calcium imaging signals. Scientific Reports, 2018, 8, 3493.                                                                                                               | 3.3  | 59        |
| 14 | Modulation of complex spike activity differs between zebrin-positive and -negative Purkinje cells in the pigeon cerebellum. Journal of Neurophysiology, 2018, 120, 250-262.                                             | 1.8  | 8         |
| 15 | Optimization of interneuron function by direct coupling of cell migration and axonal targeting.<br>Nature Neuroscience, 2018, 21, 920-931.                                                                              | 14.8 | 72        |
| 16 | A Critical Role for Astrocytes in Hypercapnic Vasodilation in Brain. Journal of Neuroscience, 2017, 37, 2403-2414.                                                                                                      | 3.6  | 58        |
| 17 | Acute in utero exposure to lipopolysaccharide induces inflammation in the pre- and postnatal brain<br>and alters the glial cytoarchitecture in the developing amygdala. Journal of Neuroinflammation, 2017,<br>14, 212. | 7.2  | 88        |
| 18 | The Cerebellum of Nonmammalian Vertebrates. , 2017, , 373-385.                                                                                                                                                          |      | 10        |

Janelle M P Pakan

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. ELife, 2016, 5, .                                                                                                                   | 6.0  | 211       |
| 20 | Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cellular and Molecular Life Sciences, 2015, 72, 367-381.                                                                         | 5.4  | 49        |
| 21 | Effect of maternal immune activation on pre―and postnatal murine brain development. FASEB Journal, 2015, 29, LB32.                                                                                                                                | 0.5  | 0         |
| 22 | A method to investigate radial glia cell behavior using two-photon time-lapse microscopy in an ex vivo model of spinal cord development. Frontiers in Neuroanatomy, 2014, 8, 22.                                                                  | 1.7  | 13        |
| 23 | Climbing fiber projections in relation to zebrin stripes in the ventral uvula in pigeons. Journal of<br>Comparative Neurology, 2014, 522, 3629-3643.                                                                                              | 1.6  | 7         |
| 24 | Radial glial cells: Key organisers in CNS development. International Journal of Biochemistry and Cell<br>Biology, 2014, 46, 76-79.                                                                                                                | 2.8  | 70        |
| 25 | Small molecule phosphorescent probes for O <sub>2</sub> imaging in 3D tissue models. Biomaterials<br>Science, 2014, 2, 853-866.                                                                                                                   | 5.4  | 93        |
| 26 | Expression of neuropeptide Y1 receptors in the amygdala and hippocampus and anxiety-like behavior associated with Ammon's horn sclerosis following intrahippocampal kainate injection in C57BL/6J mice. Epilepsy and Behavior, 2014, 37, 175-183. | 1.7  | 18        |
| 27 | Realâ€ŧime monitoring of oxygenation in cultured organotypic brain slices (1180.20). FASEB Journal, 2014,<br>28, 1180.20.                                                                                                                         | 0.5  | 0         |
| 28 | The spatial and temporal arrangement of the radial glial scaffold suggests a role in axon tract formation in the developing spinal cord. Journal of Anatomy, 2013, 222, 203-213.                                                                  | 1.5  | 16        |
| 29 | An ex-vivo multiple sclerosis model of inflammatory demyelination using hyperbranched polymer.<br>Biomaterials, 2013, 34, 5872-5882.                                                                                                              | 11.4 | 4         |
| 30 | Social status, breeding state, and GnRH soma size in convict cichlids (Cryptoheros nigrofasciatus).<br>Behavioural Brain Research, 2013, 237, 318-324.                                                                                            | 2.2  | 12        |
| 31 | Distribution of zebrinâ€immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei<br>of birds. Journal of Comparative Neurology, 2012, 520, 1532-1546.                                                                       | 1.6  | 13        |
| 32 | Heterogeneity of parvalbumin expression in the avian cerebellar cortex and comparisons with zebrin<br>II. Neuroscience, 2011, 185, 73-84.                                                                                                         | 2.3  | 11        |
| 33 | Organization of the cerebellum: Correlating zebrin immunochemistry with optic flow zones in the pigeon flocculus. Visual Neuroscience, 2011, 28, 163-174.                                                                                         | 1.0  | 25        |
| 34 | Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum. Journal of Comparative Neurology, 2010, 518, 175-198.                                                                                     | 1.6  | 41        |
| 35 | Allometric Scaling of the Tectofugal Pathway in Birds. Brain, Behavior and Evolution, 2010, 75, 122-137.                                                                                                                                          | 1.7  | 30        |
| 36 | The optic tectum of birds: Mapping our way to understanding visual processing Canadian Journal of<br>Experimental Psychology, 2009, 63, 328-338.                                                                                                  | 0.8  | 84        |

Janelle M P Pakan

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Expression of calcium-binding proteins in cerebellar- and inferior olivary-projecting neurons in the nucleus lentiformis mesencephali of pigeons. Visual Neuroscience, 2009, 26, 341-347.                                           | 1.0 | 19        |
| 38 | Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase Cl²4. Journal of Chemical Neuroanatomy, 2009, 37, 55-63.                                    | 2.1 | 34        |
| 39 | Differential projections from the vestibular nuclei to the flocculus and uvulaâ€nodulus in pigeons<br>( <i>Columba livia</i> ). Journal of Comparative Neurology, 2008, 508, 402-417.                                               | 1.6 | 21        |
| 40 | Congruence of zebrin II expression and functional zones defined by climbing fiber topography in the flocculus. Neuroscience, 2008, 157, 57-69.                                                                                      | 2.3 | 23        |
| 41 | Expression of calcium-binding proteins in pathways from the nucleus of the basal optic root to the cerebellum in pigeons. Visual Neuroscience, 2008, 25, 701-707.                                                                   | 1.0 | 8         |
| 42 | Projections of the nucleus of the basal optic root in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections. Visual Neuroscience, 2007, 24, 691-707.              | 1.0 | 13        |
| 43 | Purkinje cell compartmentation as revealed by Zebrin II expression in the cerebellar cortex of pigeons<br>( <i>Columba livia</i> ). Journal of Comparative Neurology, 2007, 501, 619-630.                                           | 1.6 | 57        |
| 44 | A comparison of ventral tegmental neurons projecting to optic flow regions of the inferior olive vs. the hippocampal formation. Neuroscience, 2006, 141, 463-473.                                                                   | 2.3 | 6         |
| 45 | Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections. Journal of Comparative Neurology, 2006, 495, 84-99. | 1.6 | 25        |
| 46 | Two optic flow pathways from the pretectal nucleus lentiformis mesencephali to the cerebellum in pigeons (Columba livia). Journal of Comparative Neurology, 2006, 499, 732-744.                                                     | 1.6 | 40        |
| 47 | Inferior olivary neurons innervate multiple zones of the flocculus in pigeons (Columba livia). Journal of Comparative Neurology, 2005, 486, 159-168.                                                                                | 1.6 | 18        |
| 48 | Cerebellar-Recipient Motor Thalamus Drives Behavioral Context-Specific Movement Initiation. SSRN<br>Electronic Journal, 0, , .                                                                                                      | 0.4 | 3         |