
## Binayak Mohanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2098839/publications.pdf Version: 2024-02-01



**Βινανακ Μομαντ**ν

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Upscaling sparse groundâ€based soil moisture observations for the validation of coarseâ€resolution satellite soil moisture products. Reviews of Geophysics, 2012, 50, .                                                         | 23.0 | 493       |
| 2  | Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone. Vadose Zone<br>Journal, 2006, 5, 784-800.                                                                                                    | 2.2  | 400       |
| 3  | SMEX02: Field scale variability, time stability and similarity of soil moisture. Remote Sensing of Environment, 2004, 92, 436-446.                                                                                              | 11.0 | 305       |
| 4  | Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources<br>Research, 2019, 55, 1737-1772.                                                                                                      | 4.2  | 281       |
| 5  | ECOSTRESS: NASA's Next Generation Mission to Measure Evapotranspiration From the International Space Station. Water Resources Research, 2020, 56, e2019WR026058.                                                                | 4.2  | 220       |
| 6  | Soil Moisture Remote Sensing: Stateâ€ofâ€the‣cience. Vadose Zone Journal, 2017, 16, 1-9.                                                                                                                                        | 2.2  | 200       |
| 7  | Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil and Tillage<br>Research, 1997, 10, 115-131.                                                                                                | 0.4  | 142       |
| 8  | SPATIAL VARIABILITY OF HYDRAULIC PROPERTIES IN A MULTI-LAYERED SOIL PROFILE. Soil Science, 1996, 161, 167-181.                                                                                                                  | 0.9  | 142       |
| 9  | Spatial analysis of hydraulic conductivity measured using disc infiltrometers. Water Resources<br>Research, 1994, 30, 2489-2498.                                                                                                | 4.2  | 138       |
| 10 | New piecewise-continuous hydraulic functions for modeling preferential flow in an intermittent-flood-irrigated field. Water Resources Research, 1997, 33, 2049-2063.                                                            | 4.2  | 126       |
| 11 | Comparison of Saturated Hydraulic Conductivity Measurement Methods for a Glacialâ€Till Soil. Soil<br>Science Society of America Journal, 1994, 58, 672-677.                                                                     | 2.2  | 107       |
| 12 | Root Zone Soil Moisture Assessment Using Remote Sensing and Vadose Zone Modeling. Vadose Zone<br>Journal, 2006, 5, 296-307.                                                                                                     | 2.2  | 107       |
| 13 | Physical controls of nearâ€surface soil moisture across varying spatial scales in an agricultural<br>landscape during SMEX02. Water Resources Research, 2010, 46, .                                                             | 4.2  | 95        |
| 14 | Analysis and mapping of field-scale soil moisture variability using high-resolution, ground-based data<br>during the Southern Great Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research, 2000,<br>36, 1023-1031. | 4.2  | 91        |
| 15 | Soil Hydraulic Conductivities and their Spatial and Temporal Variations in a Vertisol. Soil Science<br>Society of America Journal, 2006, 70, 1872-1881.                                                                         | 2.2  | 87        |
| 16 | Development and analysis of the Soil Water Infiltration Global database. Earth System Science Data, 2018, 10, 1237-1263.                                                                                                        | 9.9  | 85        |
| 17 | Evolution of soil moisture spatial structure in a mixed vegetation pixel during the Southern Great<br>Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research, 2000, 36, 3675-3686.                                  | 4.2  | 82        |
| 18 | Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut<br>Gulch Watershed during SMEX04. Remote Sensing of Environment, 2008, 112, 415-429.                                           | 11.0 | 81        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Spatial Averaging of van Genuchten Hydraulic Parameters for Steadyâ€State Flow in Heterogeneous<br>Soils: A Numerical Study. Vadose Zone Journal, 2002, 1, 261-272.                          | 2.2  | 70        |
| 20 | Including Topography and Vegetation Attributes for Developing Pedotransfer Functions. Soil Science<br>Society of America Journal, 2006, 70, 1430-1440.                                       | 2.2  | 68        |
| 21 | Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities. Water Resources Research, 2011, 47, 2010WR009451.                           | 4.2  | 68        |
| 22 | Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition.<br>Water Resources Research, 2000, 36, 3311-3324.                                       | 4.2  | 66        |
| 23 | Spatiotemporal analyses of soil moisture from point to footprint scale in two different<br>hydroclimatic regions. Water Resources Research, 2011, 47, .                                      | 4.2  | 61        |
| 24 | Preferential transport of nitrate to a tile drain in an intermittent-flood-irrigated field: Model<br>development and experimental evaluation. Water Resources Research, 1998, 34, 1061-1076. | 4.2  | 59        |
| 25 | Subsurface stormflow is important in semiarid karst shrublands. Geophysical Research Letters, 2008, 35, .                                                                                    | 4.0  | 58        |
| 26 | Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface<br>Modeling. Vadose Zone Journal, 2019, 18, 1-53.                                                | 2.2  | 56        |
| 27 | Inverse Dualâ€Permeability Modeling of Preferential Water Flow in a Soil Column and Implications for<br>Fieldâ€ <del>S</del> cale Solute Transport. Vadose Zone Journal, 2006, 5, 59-76.     | 2.2  | 55        |
| 28 | Nearâ€surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithm: 1. Conceptual modeling. Water Resources Research, 2008, 44, .          | 4.2  | 53        |
| 29 | Temporal dynamics of PSR-based soil moisture across spatial scales in an agricultural landscape<br>during SMEX02: A wavelet approach. Remote Sensing of Environment, 2008, 112, 522-534.     | 11.0 | 52        |
| 30 | Evolution of physical controls for soil moisture in humid and subhumid watersheds. Water<br>Resources Research, 2013, 49, 1244-1258.                                                         | 4.2  | 51        |
| 31 | Effective Hydraulic Parameters in Horizontally and Vertically Heterogeneous Soils for Steady-State<br>Land–Atmosphere Interaction. Journal of Hydrometeorology, 2007, 8, 715-729.            | 1.9  | 50        |
| 32 | Soil Hydraulic Property Estimation Using Remote Sensing: A Review. Vadose Zone Journal, 2013, 12, 1-9.                                                                                       | 2.2  | 50        |
| 33 | Soil property database: Southern Great Plains 1997 Hydrology Experiment. Water Resources Research,<br>2002, 38, 5-1-5-7.                                                                     | 4.2  | 49        |
| 34 | Upscaling of soil hydraulic properties for steady state evaporation and infiltration. Water Resources<br>Research, 2002, 38, 17-1-17-13.                                                     | 4.2  | 46        |
| 35 | Impacts of Juniper Vegetation and Karst Geology on Subsurface Flow Processes in the Edwards<br>Plateau, Texas. Vadose Zone Journal, 2006, 5, 1076-1085.                                      | 2.2  | 45        |
| 36 | Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications. Water Resources Research, 2013, 49, 6208-6228.    | 4.2  | 45        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effective hydraulic parameters for steady state vertical flow in heterogeneous soils. Water<br>Resources Research, 2003, 39, .                                                                                         | 4.2 | 44        |
| 38 | Water flow processes in a soil column with a cylindrical macropore: Experiment and hierarchical modeling. Water Resources Research, 2005, 41, .                                                                        | 4.2 | 44        |
| 39 | Multiscale Pedotransfer Functions for Soil Water Retention. Vadose Zone Journal, 2007, 6, 868-878.                                                                                                                     | 2.2 | 44        |
| 40 | Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation. Journal of Hydrology, 2011, 399, 201-211.                                                                                    | 5.4 | 44        |
| 41 | Nearâ€Surface Soil Moisture Assimilation for Quantifying Effective Soil Hydraulic Properties under<br>Different Hydroclimatic Conditions. Vadose Zone Journal, 2008, 7, 39-52.                                         | 2.2 | 41        |
| 42 | INFILTRATION AND MACROPOROSITY UNDER A ROW CROP AGRICULTURAL FIELD IN A GLACIAL TILL SOIL 1.<br>Soil Science, 1996, 161, 205-213.                                                                                      | 0.9 | 41        |
| 43 | Nearâ€surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: 2. Using airborne remote sensing during SGP97 and SMEX02. Water Resources Research, 2009, 45, . | 4.2 | 40        |
| 44 | Landâ€surface controls on nearâ€surface soil moisture dynamics: Traversing remote sensing footprints.<br>Water Resources Research, 2016, 52, 6365-6385.                                                                | 4.2 | 40        |
| 45 | Scaling of near-saturated hydraulic conductivity measured using disc infiltrometers. Water<br>Resources Research, 1998, 34, 1195-1205.                                                                                 | 4.2 | 39        |
| 46 | Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model. Agricultural Water Management, 2014, 141, 10-22.                                   | 5.6 | 39        |
| 47 | Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models. Water Resources Research, 2004, 40, .                                                                      | 4.2 | 36        |
| 48 | Spatial variability of residual nitrate-nitrogen under two tillage systems in central Iowa: A composite<br>three-dimensional resistant and exploratory approach. Water Resources Research, 1994, 30, 237-251.          | 4.2 | 35        |
| 49 | Uncertainty in dual permeability model parameters for structured soils. Water Resources Research, 2012, 48, WR010500.                                                                                                  | 4.2 | 35        |
| 50 | Gap Filling of Highâ€Resolution Soil Moisture for SMAP/Sentinelâ€1: A Twoâ€Layer Machine Learningâ€Based<br>Framework. Water Resources Research, 2019, 55, 6986-7009.                                                  | 4.2 | 35        |
| 51 | Correspondence and Upscaling of Hydraulic Functions for Steadyâ€&tate Flow in Heterogeneous Soils.<br>Vadose Zone Journal, 2004, 3, 527-533.                                                                           | 2.2 | 34        |
| 52 | Global sensitivity analysis and calibration of parameters for a physically-based agro-hydrological model. Environmental Modelling and Software, 2016, 83, 88-102.                                                      | 4.5 | 34        |
| 53 | A Robust-Resistant Approach to Interpret Spatial Behavior of Saturated Hydraulic Conductivity of a<br>Glacial Till Soil Under No-Tillage System. Water Resources Research, 1991, 27, 2979-2992.                        | 4.2 | 31        |
| 54 | Effective scaling factor for transient infiltration in heterogeneous soils. Journal of Hydrology, 2006, 319, 96-108.                                                                                                   | 5.4 | 31        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lateral Water Diffusion in an Artificial Macroporous System: Modeling and Experimental Evidence.<br>Vadose Zone Journal, 2003, 2, 212-221.                                                                            | 2.2 | 31        |
| 56 | Effective soil moisture estimate and its uncertainty using multimodel simulation based on Bayesian<br>Model Averaging. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8023-8042.                          | 3.3 | 30        |
| 57 | On topographic controls of soil hydraulic parameter scaling at hillslope scales. Water Resources<br>Research, 2012, 48, .                                                                                             | 4.2 | 29        |
| 58 | Inverse Mobile–Immobile Modeling of Transport During Transient Flow: Effects of Betweenâ€Đomain<br>Transfer and Initial Water Content. Vadose Zone Journal, 2004, 3, 1309-1321.                                       | 2.2 | 28        |
| 59 | Spatiotemporal Analysis of Soil Moisture and Optimal Sampling Design for Regional cale Soil<br>Moisture Estimation in a Tropical Watershed of India. Water Resources Research, 2019, 55, 2057-2078.                   | 4.2 | 28        |
| 60 | Comparison of alternative methods for deriving hydraulic properties and scaling factors from single-disc tension infiltrometer measurements. Water Resources Research, 2002, 38, 25-1-25-14.                          | 4.2 | 27        |
| 61 | Multiscale Bayesian neural networks for soil water content estimation. Water Resources Research, 2008, 44, .                                                                                                          | 4.2 | 27        |
| 62 | Soil hydraulic properties in oneâ€dimensional layered soil profile using layerâ€specific soil moisture<br>assimilation scheme. Water Resources Research, 2012, 48, .                                                  | 4.2 | 27        |
| 63 | An unmixing algorithm for remotely sensed soil moisture. Water Resources Research, 2013, 49, 408-425.                                                                                                                 | 4.2 | 27        |
| 64 | Influence of lateral subsurface flow and connectivity on soil water storage in land surface modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 704-721.                                             | 3.3 | 27        |
| 65 | Analytical solutions for steady state vertical infiltration. Water Resources Research, 2002, 38, 20-1-20-5.                                                                                                           | 4.2 | 26        |
| 66 | On the Effective Averaging Schemes of Hydraulic Properties at the Landscape Scale. Vadose Zone<br>Journal, 2006, 5, 308-316.                                                                                          | 2.2 | 26        |
| 67 | Parameter conditioning with a noisy Monte Carlo genetic algorithm for estimating effective soil<br>hydraulic properties from space. Water Resources Research, 2008, 44, .                                             | 4.2 | 25        |
| 68 | Global sensitivity analysis of the radiative transfer model. Water Resources Research, 2015, 51, 2428-2443.                                                                                                           | 4.2 | 25        |
| 69 | Impact of the Linked Surface Water-Soil Water-Groundwater System on Transport of E. coli in the Subsurface. Water, Air, and Soil Pollution, 2016, 227, 1.                                                             | 2.4 | 25        |
| 70 | Validation of SMAP Soil Moisture Products Using Ground-Based Observations for the Paddy<br>Dominated Tropical Region of India. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57,<br>8479-8491.            | 6.3 | 25        |
| 71 | Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous<br>Soils: A Numerical Study. Vadose Zone Journal, 2002, 1, 261-272.                                                    | 2.2 | 25        |
| 72 | Uncertainties of Water Fluxes in Soil–Vegetation–Atmosphere Transfer Models: Inverting Surface<br>Soil Moisture and Evapotranspiration Retrieved from Remote Sensing. Vadose Zone Journal, 2012, 11,<br>vzj2011.0167. | 2.2 | 24        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Estimating <i>Escherichia coli</i> loads in streams based on various physical, chemical, and biological factors. Water Resources Research, 2013, 49, 2896-2906.                                           | 4.2 | 24        |
| 74 | Enhanced Biogeochemical Cycling and Subsequent Reduction of Hydraulic Conductivity Associated<br>with Soil‣ayer Interfaces in the Vadose Zone. Journal of Environmental Quality, 2011, 40, 1941-1954.     | 2.0 | 22        |
| 75 | Global Flash Drought Monitoring Using Surface Soil Moisture. Water Resources Research, 2021, 57, e2021WR029901.                                                                                           | 4.2 | 22        |
| 76 | Temporal dynamics of biogeochemical processes at the Norman Landfill site. Water Resources Research, 2013, 49, 6909-6926.                                                                                 | 4.2 | 21        |
| 77 | Hot Spots and Persistence of Nitrate in Aquifers Across Scales. Entropy, 2016, 18, 25.                                                                                                                    | 2.2 | 21        |
| 78 | Reduction of Feasible Parameter Space of the Inverted Soil Hydraulic Parameter Sets for Kosugi<br>Model. Soil Science, 2013, 178, 267-280.                                                                | 0.9 | 20        |
| 79 | Scaling hydraulic properties of a macroporous soil. Water Resources Research, 1999, 35, 1927-1931.                                                                                                        | 4.2 | 18        |
| 80 | Soil Hydraulic Parameter Upscaling for Steadyâ€ <del>S</del> tate Flow with Root Water Uptake. Vadose Zone<br>Journal, 2004, 3, 1464-1470.                                                                | 2.2 | 18        |
| 81 | Soil microorganisms regulate extracellular enzyme production to maximize their growth rate.<br>Biogeochemistry, 2022, 158, 303-312.                                                                       | 3.5 | 18        |
| 82 | Impact of Saturated Hydraulic Conductivity on the Prediction of Tile Flow. Soil Science Society of America Journal, 1998, 62, 1522-1529.                                                                  | 2.2 | 17        |
| 83 | Enhancing Water Cycle Measurements for Future Hydrologic Research. Bulletin of the American<br>Meteorological Society, 2007, 88, 669-676.                                                                 | 3.3 | 17        |
| 84 | A topographyâ€based scaling algorithm for soil hydraulic parameters at hillslope scales: Field testing.<br>Water Resources Research, 2012, 48, .                                                          | 4.2 | 17        |
| 85 | Remote Sensing for Vadose Zone Hydrology—A Synthesis from the Vantage Point. Vadose Zone Journal,<br>2013, 12, 1-6.                                                                                       | 2.2 | 16        |
| 86 | A physically based hydrological connectivity algorithm for describing spatial patterns of soil<br>moisture in the unsaturated zone. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2096-2114. | 3.3 | 16        |
| 87 | Profile Soil Moisture Across Spatial Scales Under Different Hydroclimatic Conditions. Soil Science, 2010, 175, 315-319.                                                                                   | 0.9 | 15        |
| 88 | Estimating Effective Soil Hydraulic Properties Using Spatially Distributed Soil Moisture and Evapotranspiration. Vadose Zone Journal, 2013, 12, 1-16.                                                     | 2.2 | 15        |
| 89 | Effective parameterizations of three nonwetting phase relative permeability models. Water Resources Research, 2015, 51, 6520-6531.                                                                        | 4.2 | 15        |
| 90 | Multiscale Surface Roughness for Improved Soil Moisture Estimation. IEEE Transactions on<br>Geoscience and Remote Sensing, 2020, 58, 5264-5276.                                                           | 6.3 | 15        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A Markov chain Monte Carlo algorithm for upscaled soilâ€vegetationâ€atmosphereâ€transfer modeling to<br>evaluate satelliteâ€based soil moisture measurements. Water Resources Research, 2008, 44, .                        | 4.2 | 14        |
| 92  | Characterization of effective saturated hydraulic conductivity in an agricultural field using<br>Karhunenâ&Łoève expansion with the Markov chain Monte Carlo technique. Water Resources Research,<br>2010, 46, .           | 4.2 | 14        |
| 93  | A Nonstationary Geostatistical Framework for Soil Moisture Prediction in the Presence of Surface<br>Heterogeneity. Water Resources Research, 2019, 55, 729-753.                                                            | 4.2 | 14        |
| 94  | Weighted objective function selector algorithm for parameter estimation of SVAT models with remote sensing data. Water Resources Research, 2013, 49, 6959-6978.                                                            | 4.2 | 13        |
| 95  | Estimating soil water characteristic curve using landscape features and soil thermal properties. Soil and Tillage Research, 2019, 189, 1-14.                                                                               | 5.6 | 13        |
| 96  | Global Surface Soil Moisture Drydown Patterns. Water Resources Research, 2021, 57, .                                                                                                                                       | 4.2 | 13        |
| 97  | Correspondence and Upscaling of Hydraulic Functions for Steady-State Flow in Heterogeneous Soils.<br>Vadose Zone Journal, 2004, 3, 527-533.                                                                                | 2.2 | 13        |
| 98  | Effect of observation scale on remote sensing based estimates of evapotranspiration in a semi-arid row cropped orchard environment. Precision Agriculture, 2017, 18, 762-778.                                              | 6.0 | 12        |
| 99  | Improved Tension Infiltrometer for Measuring Low Fluid Flow Rates in Unsaturated Fractured Rock.<br>Vadose Zone Journal, 2005, 4, 885-890.                                                                                 | 2.2 | 12        |
| 100 | An integrated Markov chain Monte Carlo algorithm for upscaling hydrological and geochemical parameters from column to field scale. Science of the Total Environment, 2015, 512-513, 428-443.                               | 8.0 | 11        |
| 101 | A Nomograph to Incorporate Geophysical Heterogeneity in Soil Moisture Downscaling. Water<br>Resources Research, 2019, 55, 34-54.                                                                                           | 4.2 | 11        |
| 102 | Investigating the capability of estimating soil thermal conductivity using topographical attributes for the Southern Great Plains, USA. Soil and Tillage Research, 2021, 206, 104811.                                      | 5.6 | 11        |
| 103 | Toward Developing a Generalizable Pedotransfer Function for Saturated Hydraulic Conductivity<br>Using Transfer Learning and Predictor Selector Algorithm. Water Resources Research, 2021, 57,<br>e2020WR028862.            | 4.2 | 11        |
| 104 | Comment on "A simulation analysis of the advective effect on evaporation using a twoâ€phase heat and<br>mass flow model†by Yijian Zeng, Zhongbo Su, Li Wan, and Jun Wen. Water Resources Research, 2013, 49,<br>7831-7835. | 4.2 | 10        |
| 105 | Space-time modeling of soil moisture. Advances in Water Resources, 2017, 109, 343-354.                                                                                                                                     | 3.8 | 9         |
| 106 | Prediction of Relative Air Permeability of Porous Media With Weibull Pore Size Distribution. Water<br>Resources Research, 2019, 55, 10037-10049.                                                                           | 4.2 | 9         |
| 107 | Upscaling Soil Hydraulic Parameters in the Picacho Mountain Region Using Bayesian Neural Networks.<br>Transactions of the ASABE, 2012, 55, 463-473.                                                                        | 1.1 | 8         |
| 108 | Spatial Averaging of van Genuchten Hydraulic Parameters for Steady-State Flow in Heterogeneous<br>Soils. Vadose Zone Journal, 2002, 1, 261.                                                                                | 2.2 | 8         |

| #   | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A comparative study of multiple approaches to soil hydraulic parameter scaling applied at the hillslope scale. Water Resources Research, 2012, 48, .                                                                                                                               | 4.2 | 7         |
| 110 | Development of non-parametric evolutionary algorithm for predicting soil moisture dynamics.<br>Journal of Hydrology, 2018, 564, 208-221.                                                                                                                                           | 5.4 | 7         |
| 111 | Effects of Water Retention Curves and Permeability Equations on the Prediction of Relative Air<br>Permeability. Geophysical Research Letters, 2021, 48, e2021GL092459.                                                                                                             | 4.0 | 7         |
| 112 | Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface. Water Resources Research, 2018, 54, 995-1012.                                                                                                                                                            | 4.2 | 6         |
| 113 | Multiscale Data Fusion for Surface Soil Moisture Estimation: A Spatial Hierarchical Approach. Water<br>Resources Research, 2019, 55, 10443-10465.                                                                                                                                  | 4.2 | 6         |
| 114 | An Explicit Scheme to Represent the Bidirectional Hydrologic Exchanges Between the Vadose Zone,<br>Phreatic Aquifer, and River. Water Resources Research, 2020, 56, e2020WR027571.                                                                                                 | 4.2 | 6         |
| 115 | Soil Moisture Retrieval Using SMAP L-Band Radiometer and RISAT-1 C-Band SAR Data in the Paddy<br>Dominated Tropical Region of India. IEEE Journal of Selected Topics in Applied Earth Observations and<br>Remote Sensing, 2021, 14, 10644-10664.                                   | 4.9 | 6         |
| 116 | Evidence of Aqueous Iron Sulfide Clusters in the Vadose Zone. Vadose Zone Journal, 2014, 13, 1-12.                                                                                                                                                                                 | 2.2 | 5         |
| 117 | Modeling Onsite Wastewater Treatment Systems in a Coastal Texas Watershed. Water, Air, and Soil Pollution, 2016, 227, 1.                                                                                                                                                           | 2.4 | 4         |
| 118 | Characterization of groundwater variability using hydrological, geological, and climatic factors in<br>data-scarce tropical savanna region of India. Journal of Hydrology: Regional Studies, 2021, 37, 100887.                                                                     | 2.4 | 4         |
| 119 | Context-Aware Deep Representation Learning for Geo-Spatiotemporal Analysis. , 2020, , .                                                                                                                                                                                            |     | 4         |
| 120 | Analysis of Temperature Effects on Tension Infiltrometry of Low Permeability Materials. Vadose Zone<br>Journal, 2005, 4, 481-487.                                                                                                                                                  | 2.2 | 2         |
| 121 | Characterization of Backscatter by Surface Features in L-Band Active Microwave Remote Sensing of Soil Moisture. , 2008, , .                                                                                                                                                        |     | 2         |
| 122 | On the Radiative Transfer Model for Soil Moisture across Space, Time and Hydro-Climates. Remote<br>Sensing, 2020, 12, 2645.                                                                                                                                                        | 4.0 | 2         |
| 123 | A Framework for Assessing Soil Moisture Deficit and Crop Water Stress at Multiple Space and Time<br>Scales Under Climate Change Scenarios Using Model Platform, Satellite Remote Sensing, and Decision<br>Support System. Springer Remote Sensing/photogrammetry, 2017, , 173-196. | 0.4 | 1         |
| 124 | Multi-scale surface roughness model for soil moisture retrieval. , 2017, , .                                                                                                                                                                                                       |     | 0         |
| 125 | A semianalytical solution of the modified twoâ€dimensional diffusive root growth model. Vadose Zone<br>Journal, 2021, 20, e20132.                                                                                                                                                  | 2.2 | Ο         |