
Andreas Schedl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2098379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of <i>Sox5</i> and <i>Sox6</i> . Genes and Development, 2002, 16, 2813-2828.	5.9	1,511
2	Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice. Science, 2001, 293, 2449-2452.	12.6	1,414
3	Pax6 Controls Progenitor Cell Identity and Neuronal Fate in Response to Graded Shh Signaling. Cell, 1997, 90, 169-180.	28.9	939
4	Sox9 induces testis development in XX transgenic mice. Nature Genetics, 2001, 28, 216-217.	21.4	619
5	R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nature Genetics, 2006, 38, 1304-1309.	21.4	575
6	The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes and Development, 2003, 17, 1677-1689.	5.9	541
7	Functional analysis of <i>Sox8</i> and <i>Sox9</i> during sex determination in the mouse. Development (Cambridge), 2004, 131, 1891-1901.	2.5	490
8	Two Splice Variants of the Wilms' Tumor 1 Gene Have Distinct Functions during Sex Determination and Nephron Formation. Cell, 2001, 106, 319-329.	28.9	479
9	Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nature Cell Biology, 2014, 16, 367-375.	10.3	422
10	Influence of PAX6 Gene Dosage on Development: Overexpression Causes Severe Eye Abnormalities. Cell, 1996, 86, 71-82.	28.9	411
11	Activation of Â-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Human Molecular Genetics, 2008, 17, 1264-1277.	2.9	407
12	Sox9 Is Essential for Outer Root Sheath Differentiation and the Formation of the Hair Stem Cell Compartment. Current Biology, 2005, 15, 1340-1351.	3.9	366
13	The Transcriptional Control of Trunk Neural Crest Induction, Survival, and Delamination. Developmental Cell, 2005, 8, 179-192.	7.0	360
14	Renal abnormalities and their developmental origin. Nature Reviews Genetics, 2007, 8, 791-802.	16.3	342
15	Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. Journal of Clinical Investigation, 2010, 120, 433-445.	8.2	293
16	A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature, 1993, 362, 258-261.	27.8	292
17	WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Human Molecular Genetics, 2002, 11, 651-659.	2.9	241
18	Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6502-6507	7.1	237

#	Article	IF	CITATIONS
19	Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Human Molecular Genetics, 2001, 10, 2049-2059.	2.9	180
20	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.9	180
21	Sox9 Activation Highlights a Cellular Pathway of Renal Repair in the Acutely Injured Mammalian Kidney. Cell Reports, 2015, 12, 1325-1338.	6.4	172
22	The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation. Cell Reports, 2015, 13, 1757-1764.	6.4	155
23	Deletion of long-range regulatory elements upstream of <i>SOX9</i> causes campomelic dysplasia. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10649-10654.	7.1	153
24	YAC transgenic analysis reveals Wilms' Tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mechanisms of Development, 1998, 79, 169-184.	1.7	145
25	Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller Glial cell development. Journal of Comparative Neurology, 2008, 510, 237-250.	1.6	145
26	The Major Podocyte Protein Nephrin Is Transcriptionally Activated by the Wilms' Tumor Suppressor WT1. Journal of the American Society of Nephrology: JASN, 2004, 15, 3044-3051.	6.1	144
27	Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms' tumor transcription factor Wt1. Genes and Development, 2005, 19, 2631-2642.	5.9	142
28	A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Research, 1993, 21, 4783-4787.	14.5	139
29	The complex life of WT1. Journal of Cell Science, 2003, 116, 1653-1658.	2.0	138
30	The Wilms' tumor gene <i>Wt1</i> is required for normal development of the retina. EMBO Journal, 2002, 21, 1398-1405.	7.8	135
31	Cbx2, a Polycomb Group Gene, Is Required for Sry Gene Expression in Mice. Endocrinology, 2012, 153, 913-924.	2.8	131
32	SOX9 controls epithelial branching by activating RET effector genes during kidney development. Human Molecular Genetics, 2011, 20, 1143-1153.	2.9	118
33	Cross-talk in kidney development. Current Opinion in Genetics and Development, 2000, 10, 543-549.	3.3	109
34	GENE INTERACTIONS IN GONADAL DEVELOPMENT. Annual Review of Physiology, 1999, 61, 417-433.	13.1	101
35	Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice Genes and Development, 1992, 6, 1430-1443.	5.9	99
36	WT1 Maintains Adrenal-Gonadal Primordium Identity and Marks a Population of AGP-like Progenitors within the Adrenal Gland. Developmental Cell, 2013, 27, 5-18.	7.0	98

#	Article	IF	CITATIONS
37	Transgenic mice generated by pronuclear injection of a yeast artificial chromosome. Nucleic Acids Research, 1992, 20, 3073-3077.	14.5	95
38	WT1 controls antagonistic FCF and BMP-pSMAD pathways in early renal progenitors. Nature Communications, 2014, 5, 4444.	12.8	94
39	WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development (Cambridge), 2012, 139, 4461-4472.	2.5	88
40	PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nature Communications, 2016, 7, 12751.	12.8	86
41	The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Developmental Biology, 2004, 268, 123-134.	2.0	83
42	The Adult Adrenal Cortex Undergoes Rapid Tissue Renewal in a Sex-Specific Manner. Cell Stem Cell, 2019, 25, 290-296.e2.	11.1	83
43	SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. Journal of Cutaneous Pathology, 2008, 35, 373-379.	1.3	82
44	A splice variant of the Wilms' tumour suppressor <i>Wt1</i> is required for normal development of the olfactory system. Development (Cambridge), 2005, 132, 1327-1336.	2.5	80
45	The Wilms' tumour suppressor WT1 is involved in endothelial cell proliferation and migration: expression in tumour vessels in vivo. Oncogene, 2008, 27, 3662-3672.	5.9	80
46	The adrenal capsule is a signaling center controlling cell renewal and zonation through <i>Rspo3</i> . Genes and Development, 2016, 30, 1389-1394.	5.9	79
47	Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrology Dialysis Transplantation, 2011, 26, 3843-3851.	0.7	78
48	Sexual dimorphism in COVID-19: potential clinical and public health implications. Lancet Diabetes and Endocrinology,the, 2022, 10, 221-230.	11.4	78
49	Intermediate filament protein nestin is expressed in developing kidney and heart and might be regulated by the Wilms' tumor suppressor Wt1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R779-R787.	1.8	74
50	Testicular Differentiation Occurs in Absence of R-spondin1 and Sox9 in Mouse Sex Reversals. PLoS Genetics, 2012, 8, e1003170.	3.5	71
51	Sox9 in Testis Determination. Annals of the New York Academy of Sciences, 2005, 1061, 9-17.	3.8	70
52	Conditional <i>Sox9</i> ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Clia, 2013, 61, 164-177.	4.9	70
53	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the neuroendocrine stress axis. Molecular Psychiatry, 2020, 25, 1611-1617.	7.9	70
54	Wilms' Tumor Suppressor Gene WT1. Journal of the American Society of Nephrology: JASN, 2000, 11, S106-S115.	6.1	64

4

#	Article	IF	CITATIONS
55	A cell-autonomous role for WT1 in regulating Sry in vivo. Human Molecular Genetics, 2009, 18, 3429-3438.	2.9	62
56	COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression. Development (Cambridge), 2011, 138, 4685-4697.	2.5	59
57	A high-resolution integrated physical, cytogenetic, and genetic map of human chromosome 11: distal p13 to proximal p15.1. Genomics, 1995, 25, 447-461.	2.9	58
58	Genes essential for early events in gonadal development. Cellular and Molecular Life Sciences, 1999, 55, 831.	5.4	45
59	The Reticulocalbin Gene Maps to the WAGR Region in Human and to the Small Eye Harwell Deletion in Mouse. Genomics, 1997, 42, 260-267.	2.9	44
60	The Cerebellin 4 Precursor Gene Is a Direct Target of SRY and SOX9 in Mice1. Biology of Reproduction, 2009, 80, 1178-1188.	2.7	44
61	Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney International, 2015, 88, 321-331.	5.2	41
62	An Inducible Mouse Model for PAX2-Dependent Glomerular Disease: Insights into a Complex Pathogenesis. Current Biology, 2006, 16, 793-800.	3.9	39
63	The Wilms' tumor suppressor WT1: Approaches to gene function. Kidney International, 1998, 53, 1512-1518.	5.2	38
64	The podocyte protein nephrin is required for cardiac vessel formation. Human Molecular Genetics, 2011, 20, 2182-2194.	2.9	38
65	Molecular mapping of albino deletions associated with early embryonic lethality in the mouse. Genomics, 1991, 9, 162-169.	2.9	36
66	Physical mapping of the albino-deletion complex in the mouse to localize alf/hsdr-1, a locus required for neonatal survival. Genomics, 1992, 14, 275-287.	2.9	36
67	Multiple roles for the Wilms' tumour suppressor gene, WT1 in genitourinary development. Molecular and Cellular Endocrinology, 1998, 140, 65-69.	3.2	36
68	Adrenal cortex renewal in health and disease. Nature Reviews Endocrinology, 2021, 17, 421-434.	9.6	33
69	Steroidogenic organ development and homeostasis: A WT1-centric view. Molecular and Cellular Endocrinology, 2015, 408, 145-155.	3.2	31
70	Retinoic acid synthesis by ALDH1A proteins is dispensable for meiosis initiation in the mouse fetal ovary. Science Advances, 2020, 6, eaaz1261.	10.3	29
71	Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. ELife, 2021, 10, .	6.0	27
72	Requirement of WT1 for Gonad and Adrenal Development: Insights from Transgenic Animals. Endocrine Research, 2000, 26, 1075-1082.	1.2	26

#	Article	IF	CITATIONS
73	WT1 and glomerular function. Seminars in Cell and Developmental Biology, 2003, 14, 233-240.	5.0	24
74	Expression patterns of the <i>Wtx/Amer</i> gene family during mouse embryonic development. Developmental Dynamics, 2010, 239, 1867-1878.	1.8	23
75	The Sexually Dimorphic Adrenal Cortex: Implications for Adrenal Disease. International Journal of Molecular Sciences, 2021, 22, 4889.	4.1	23
76	Bone Marrow Transplantation Can Attenuate the Progression of Mesangial Sclerosis. Stem Cells, 2006, 24, 406-415.	3.2	22
77	Germ line transmission of yeast artificial chromosomes in transgenic mice. Reproduction, Fertility and Development, 1994, 6, 577.	0.4	21
78	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biology, 2020, 18, e3000902.	5.6	21
79	Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene, 2017, 36, 208-218.	5.9	20
80	Cancer Stem Cells in Pheochromocytoma and Paraganglioma. Frontiers in Endocrinology, 2020, 11, 79.	3.5	20
81	R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. ELife, 2020, 9, .	6.0	20
82	YAC Transfer by Microinjection. , 1996, 54, 293-306.		19
83	Wt1 is not essential for hematopoiesis in the mouse. Leukemia Research, 2005, 29, 803-812.	0.8	19
84	The WTX/AMER1 gene family: evolution, signature and function. BMC Evolutionary Biology, 2010, 10, 280.	3.2	19
85	Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney International, 2018, 93, 1142-1153.	5.2	19
86	Chromosome jumping from flanking markers defines the minimal region for alf/hsdr-1 within the albino-deletion complex. Genomics, 1992, 14, 288-297.	2.9	18
87	Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Molecular Metabolism, 2021, 43, 101112.	6.5	18
88	Repression of CMIP transcription by WT1 is relevant to podocyte health. Kidney International, 2016, 90, 1298-1311.	5.2	17
89	Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
90	New Horizons: Novel Adrenal Regenerative Therapies. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3103-3107.	3.6	16

#	Article	IF	CITATIONS
91	Duplex kidney formation: developmental mechanisms and genetic predisposition. F1000Research, 2020, 9, 2.	1.6	16
92	Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction. ELife, 2021, 10, .	6.0	14
93	Wilms' tumour -a case of disrupted development. Journal of Cell Science, 1994, 1994, 1-5.	2.0	13
94	Myocardial-specific R-spondin3 drives proliferation of the coronary stems primarily through the Leucine Rich Repeat G Protein coupled receptor LGR4. Developmental Biology, 2018, 441, 42-51.	2.0	11
95	SOX9 expression increases with malignant potential in tumors from patients with neurofibromatosis 1 and is not correlated to desert hedgehog. Human Pathology, 2011, 42, 434-443.	2.0	10
96	Genetic and Molecular Insights Into Genotype-Phenotype Relationships in Osteopathia Striata With Cranial Sclerosis (OSCS) Through the Analysis of Novel Mouse Wtx Mutant Alleles. Journal of Bone and Mineral Research, 2018, 33, 875-887.	2.8	10
97	A cell fitness selection model for neuronal survival during development. Nature Communications, 2019, 10, 4137.	12.8	10
98	Coronary Artery Formation Is Driven by Localized Expression of R-spondin3. Cell Reports, 2017, 20, 1745-1754.	6.4	8
99	A novel Wilms' tumorÂ1 gene mutation in a child with severe renal dysfunction and persistent renal blastema. Pediatric Nephrology, 2008, 23, 1445-1453.	1.7	7
100	Genes essential for early events in gonadal development. Exs, 2001, , 11-24.	1.4	7
101	A Novel Approach to Selectively Target Neuronal Subpopulations Reveals Genetic Pathways That Regulate Tangential Migration in the Vertebrate Hindbrain. PLoS Genetics, 2011, 7, e1002099.	3.5	6
102	Early Gonadal Development: Exploring Wt1 and Sox9 Function. Novartis Foundation Symposium, 2008, , 23-34.	1.1	5
103	Multiple effects on liver-specific gene expression in albino lethal mice caused by deficiency of an enzyme in tyrosine metabolism. Journal of Cell Science, 1992, 1992, 117-122.	2.0	4
104	Early gonadal development: exploring Wt1 and Sox9 function. Novartis Foundation Symposium, 2002, 244, 23-31; discussion 31-42, 253-7.	1.1	4
105	Developmental mechanisms of adrenal cortex formation and their links with adult progenitor populations. Molecular and Cellular Endocrinology, 2021, 524, 111172.	3.2	3
106	Le gènesox9induit la formation de testicules chez des souris transgéniques de génotype XX. Medecine/Sciences, 2002, 18, 149-151.	0.2	1
107	A knockâ€in mouse line conditionally expressing the tumor suppressor WTX/AMER1. Genesis, 2017, 55, e23074.	1.6	1
108	Awakening the Bowman: inhibition of CXCL12 signaling activates parietal epithelial cells. Kidney International, 2018, 94, 1042-1044.	5.2	1

#	Article	IF	CITATIONS
109	The author replies. Kidney International, 2018, 94, 827.	5.2	1
110	Identifying Direct Downstream Targets: WT1 ChIP-Seq Analysis. Methods in Molecular Biology, 2016, 1467, 177-188.	0.9	0
111	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		Ο
112	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
113	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		Ο
114	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
115	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0
116	Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. , 2020, 18, e3000902.		0