Nazzareno Dimasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2097612/publications.pdf

Version: 2024-02-01

62 2,842 28
papers citations h-index

63 63 63 3626
all docs docs citations times ranked citing authors

52

g-index

#	Article	IF	CITATIONS
1	Resistance to Pyrrolobenzodiazepine Dimers Is Associated with SLFN11 Downregulation and Can Be Reversed through Inhibition of ATR. Molecular Cancer Therapeutics, 2021, 20, 541-552.	4.1	18
2	Generation of bispecific antibodies using chemical conjugation methods. Drug Discovery Today: Technologies, 2021, 40, 13-24.	4.0	9
3	Fab-Arm Exchange Combined with Selective Protein A Purification Results in a Platform for Rapid Preparation of Monovalent Bispecific Antibodies Directly from Culture Media. Pharmaceutics, 2020, 12, 3.	4.5	7
4	Design and Validation of Linkers for Site-Specific Preparation of Antibody–Drug Conjugates Carrying Multiple Drug Copies Per Cysteine Conjugation Site. International Journal of Molecular Sciences, 2020, 21, 6882.	4.1	9
5	Preclinical Characterization of an Antibody–Drug Conjugate Targeting CS-1 and the Identification of Uncharacterized Populations of CS-1–Positive Cells. Molecular Cancer Therapeutics, 2020, 19, 1649-1659.	4.1	O
6	Structure and Dynamics of a Site-Specific Labeled Fc Fragment with Altered Effector Functions. Pharmaceutics, 2019, 11, 546.	4. 5	8
7	Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs, 2019, 11, 500-515.	5.2	13
8	Characterization of Disulfide Bond Rebridged Fab–Drug Conjugates Prepared Using a Dual Maleimide Pyrrolobenzodiazepine Cytotoxic Payload. ChemMedChem, 2019, 14, 1185-1195.	3.2	15
9	Preclinical assessment of an antibody–PBD conjugate that targets BCMA on multiple myeloma and myeloma progenitor cells. Leukemia, 2019, 33, 766-771.	7.2	49
10	Characterization and in vitro data of antibody drug conjugates (ADCs) derived from heterotrifunctional linker designed for the site-specific preparation of dual ADCs. Data in Brief, 2018, 21, 2208-2220.	1.0	4
11	Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3617-3621.	2.2	36
12	Antitumor Activity of MEDI3726 (ADCT-401), a Pyrrolobenzodiazepine Antibody–Drug Conjugate Targeting PSMA, in Preclinical Models of Prostate Cancer. Molecular Cancer Therapeutics, 2018, 17, 2176-2186.	4.1	33
13	SLC46A3 as a Potential Predictive Biomarker for Antibody–Drug Conjugates Bearing Noncleavable Linked Maytansinoid and Pyrrolobenzodiazepine Warheads. Clinical Cancer Research, 2018, 24, 6570-6582.	7.0	56
14	Guiding bispecific monovalent antibody formation through proteolysis of IgG1 single-chain. MAbs, 2017, 9, 438-454.	5. 2	7
15	Antibody–Drug Conjugates Bearing Pyrrolobenzodiazepine or Tubulysin Payloads Are Immunomodulatory and Synergize with Multiple Immunotherapies. Cancer Research, 2017, 77, 2686-2698.	0.9	77
16	Efficient Preparation of Site-Specific Antibody–Drug Conjugates Using Cysteine Insertion. Molecular Pharmaceutics, 2017, 14, 1501-1516.	4.6	59
17	Preclinical Evaluation of MEDI0641, a Pyrrolobenzodiazepine-Conjugated Antibody–Drug Conjugate Targeting 5T4. Molecular Cancer Therapeutics, 2017, 16, 1576-1587.	4.1	37
18	Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. MAbs, 2017, 9, 240-256.	5.2	16

#	Article	IF	CITATIONS
19	Fractionated Dosing Improves Preclinical Therapeutic Index of Pyrrolobenzodiazepine-Containing Antibody Drug Conjugates. Clinical Cancer Research, 2017, 23, 5858-5868.	7.0	37
20	Antibody-Drug Conjugates. Annual Reports in Medicinal Chemistry, 2017, 50, 441-480.	0.9	13
21	Abstract 4596: Antibody-drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads alter the tumor immune microenvironment and synergize with multiple immunotherapies., 2017,,.		1
22	Straightforward Glycoengineering Approach to Site-Specific Antibody–Pyrrolobenzodiazepine Conjugates. ACS Medicinal Chemistry Letters, 2016, 7, 1005-1008.	2.8	31
23	Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics. Journal of Controlled Release, 2016, 236, 100-116.	9.9	50
24	A Nanoparticle Platform To Evaluate Bioconjugation and Receptor-Mediated Cell Uptake Using Cross-Linked Polyion Complex Micelles Bearing Antibody Fragments. Biomacromolecules, 2016, 17, 1818-1833.	5.4	35
25	The application of mathematical modelling to the design of bispecific monoclonal antibodies. MAbs, 2016, 8, 585-592.	5.2	11
26	A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell, 2016, 29, 117-129.	16.8	281
27	Biodistribution Analyses of a Near-Infrared, Fluorescently Labeled, Bispecific Monoclonal Antibody Using Optical Imaging. Comparative Medicine, 2016, 66, 90-9.	1.0	7
28	Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. Journal of Controlled Release, 2015, 220, 660-670.	9.9	95
29	Development of a Trispecific Antibody Designed to Simultaneously and Efficiently Target Three Different Antigens on Tumor Cells. Molecular Pharmaceutics, 2015, 12, 3490-3501.	4.6	20
30	Hydrolytically Stable Site-Specific Conjugation at the <i>N</i> -Terminus of an Engineered Antibody. Bioconjugate Chemistry, 2015, 26, 2085-2096.	3.6	26
31	A multifunctional bispecific antibody protects against <i>Pseudomonas aeruginosa</i> Science Translational Medicine, 2014, 6, 262ra155.	12.4	228
32	CD19 and CD32b Differentially Regulate Human B Cell Responsiveness. Journal of Immunology, 2014, 192, 1480-1490.	0.8	44
33	The Design and Characterization of Oligospecific Antibodies for Simultaneous Targeting of Multiple Disease Mediators. Journal of Molecular Biology, 2009, 393, 672-692.	4.2	84
34	Structural Features of the Full-Length Adaptor Protein GADS in Solution Determined Using Small-Angle X-Ray Scattering. Biophysical Journal, 2008, 94, 1766-1772.	0.5	5
35	Critical Residues at the Ly49 Natural Killer Receptor's Homodimer Interface Determine Functional Recognition of m157, a Mouse Cytomegalovirus MHC Class I-Like Protein. Journal of Immunology, 2007, 178, 369-377.	0.8	25
36	Crystal structure of the C-terminal SH3 domain of the adaptor protein GADS in complex with SLP-76 motif peptide reveals a unique SH3–SH3 interaction. International Journal of Biochemistry and Cell Biology, 2007, 39, 109-123.	2.8	7

#	Article	IF	CITATIONS
37	The Crystal Structure of the Extracellular Domain of the Inhibitor Receptor Expressed on Myeloid Cells IREM-1. Journal of Molecular Biology, 2007, 367, 310-318.	4.2	29
38	Molecular analysis and solution structure from small-angle X-ray scattering of the human natural killer inhibitory receptor IRp60 (CD300a). International Journal of Biological Macromolecules, 2007, 40, 193-200.	7.5	13
39	Active Focal Segmental Glomerulosclerosis Is Associated with Massive Oxidation of Plasma Albumin. Journal of the American Society of Nephrology: JASN, 2007, 18, 799-810.	6.1	83
40	Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 204-208.	0.7	60
41	Identification and molecular modelling of a novel familial mutation in the SRY gene implicated in the pure gonadal dysgenesis. European Journal of Human Genetics, 2007, 15, 76-80.	2.8	28
42	Characterization of oxidation end product of plasma albumin â€~in vivo'. Biochemical and Biophysical Research Communications, 2006, 349, 668-673.	2.1	71
43	Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 52-55.	0.7	1
44	Structural and functional aspects of the Ly49 natural killer cell receptors. Immunology and Cell Biology, 2005, 83, 1-8.	2.3	19
45	Structural and functional aspects of the Ly49 natural killer cell receptors. Immunology and Cell Biology, 2005, 83, 1-8.	2.3	38
46	Human natural killer cell receptor functions and their implication in diseases. Expert Review of Clinical Immunology, 2005, 1 , 405-417.	3.0	6
47	Innate immunity in self and infectious nonself recognition. Expert Review of Clinical Immunology, 2005, 1, 187-190.	3.0	0
48	Structure of the Ly49 Family of Natural Killer (NK) Cell Receptors and Their Interaction With MHC Class I Molecules. Immunologic Research, 2004, 30, 095-104.	2.9	22
49	Entropically Assisted Carbohydrate Recognition by a Natural Killer Cell-Surface Receptor. ChemBioChem, 2004, 5, 1571-1575.	2.6	12
50	Binding Specificity of Multiprotein Signaling Complexes Is Determined by Both Cooperative Interactions and Affinity Preferences. Biochemistry, 2004, 43, 4170-4178.	2.5	105
51	Structure of the saccharide-binding domain of the human natural killer cell inhibitory receptor p75/AIRM1. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 401-403.	2.5	21
52	Human Natural Killer cell receptors: insights into their molecular function and structure. Journal of Cellular and Molecular Medicine, 2003, 7, 376-387.	3.6	102
53	Expression, crystallization and preliminary crystallographic analysis of the extracellular IgV-like domain of the human natural killer cell inhibitory receptor p75/AIRM1. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1856-1858.	2.5	7
54	Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb. Nature Immunology, 2003, 4, 1213-1222.	14.5	127

#	Article	IF	CITATION
55	Structure and Function of Natural Killer Cell Receptors: Multiple Molecular Solutions to Self, Nonself Discrimination. Annual Review of Immunology, 2002, 20, 853-885.	21.8	305
56	Crystal Structure of the Ly49I Natural Killer Cell Receptor Reveals Variability in Dimerization Mode Within the Ly49 Family. Journal of Molecular Biology, 2002, 320, 573-585.	4.2	30
57	MHC class I recognition by Ly49 natural killer cell receptors. Molecular Immunology, 2002, 38, 1023-1027.	2.2	25
58	Crystal Structure of a Superantigen Bound to the High-Affinity, Zinc-Dependent Site on MHC Class II. Immunity, 2001, 14, 93-104.	14.3	134
59	Structural basis of MHC class I recognition by natural killer cell receptors. Immunological Reviews, 2001, 181, 52-65.	6.0	64
60	Rational design and functional expression of a constitutively active single-chain NS4A–NS3 proteinase. Folding & Design, 1998, 3, 433-441.	4.5	14
61	Design of Selective Eglin Inhibitors of HCV NS3 Proteinase. Biochemistry, 1998, 37, 11459-11468.	2.5	29
62	Characterization of engineered hepatitis C virus NS3 protease inhibitors affinity selected from human pancreatic secretory trypsin inhibitor and minibody repertoires. Journal of Virology, 1997, 71, 7461-7469.	3.4	42