Yan Burelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2097601/publications.pdf Version: 2024-02-01

YAN RUDFUF

#	Article	IF	CITATIONS
1	Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients. Rheumatology, 2022, 61, 1265-1275.	1.9	19
2	Cardiac Left Ventricle Mitochondrial Dysfunction After Neonatal Exposure to Hyperoxia: Relevance for Cardiomyopathy After Preterm Birth. Hypertension, 2022, 79, 575-587.	2.7	4
3	The intra-mitochondrial O-GlcNAcylation system rapidly modulates OXPHOS function and ROS release in the heart. Communications Biology, 2022, 5, 349.	4.4	17
4	Metabolic and Cardiac Manifestations in a Mouse Model of Genetic Mitochondrial Hepatopathy Without Obesity: Evidence for a Sexual Dimorphism. FASEB Journal, 2022, 36, .	0.5	0
5	Effects of (â^)-epicatechin on mitochondria. Nutrition Reviews, 2021, 79, 25-41.	5.8	25
6	Protein <i>O</i> â€GlcNAcylation levels are regulated independently of dietary intake in a tissue and timeâ€specific manner during rat postnatal development. Acta Physiologica, 2021, 231, e13566.	3.8	11
7	Grx2 Regulates Skeletal Muscle Mitochondrial Structure and Autophagy. Frontiers in Physiology, 2021, 12, 604210.	2.8	7
8	Proteomics characterization of mitochondrialâ€derived vesicles under oxidative stress. FASEB Journal, 2021, 35, e21278.	0.5	36
9	Adaptive optimization of the OXPHOS assembly line partially compensates lrpprc-dependent mitochondrial translation defects in mice. Communications Biology, 2021, 4, 989.	4.4	4
10	Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients, 2021, 13, 3466.	4.1	5
11	A recurrent de novo ATP5F1A substitution associated with neonatal complex V deficiency. European Journal of Human Genetics, 2021, 29, 1719-1724.	2.8	2
12	Mitophagy: A New Player in Stem Cell Biology. Biology, 2020, 9, 481.	2.8	15
13	Mitochondrial Metabolic Uncoupling in Maladaptive Right Ventricular Remodeling in Response to Pressure Overload in Fischer Rats. , 2020, , .		Ο
14	MCL-1Matrix maintains neuronal survival by enhancing mitochondrial integrity and bioenergetic capacity under stress conditions. Cell Death and Disease, 2020, 11, 321.	6.3	68
15	Fiber-specific and whole-muscle LRP130 expression in rested, exercised, and fasted human skeletal muscle. Pflugers Archiv European Journal of Physiology, 2020, 472, 375-384.	2.8	4
16	Abstract 13917: <i>O</i> -GlcNAc Levels Are Regulated in a Time and Tissue Specific Manner Independently of Dietary Intake. Circulation, 2020, 142, .	1.6	0
17	Mitochondrial psychobiology: foundations and applications. Current Opinion in Behavioral Sciences, 2019, 28, 142-151.	3.9	28
18	Hybrid Clear/Blue Native Electrophoresis for the Separation and Analysis of Mitochondrial Respiratory Chain Supercomplexes. Journal of Visualized Experiments, 2019, , .	0.3	3

YAN BURELLE

#	Article	IF	CITATIONS
19	Nutritional Regulation of Mitochondrial Function. , 2019, , 93-126.		5
20	Mitochondrial quality control in the cardiac system: An integrative view. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 782-796.	3.8	18
21	Lipidomics unveils lipid dyshomeostasis and low circulating plasmalogens as biomarkers in a monogenic mitochondrial disorder. JCI Insight, 2019, 4, .	5.0	26
22	A Mitochondrial Health Index Sensitive to Mood and Caregiving Stress. Biological Psychiatry, 2018, 84, 9-17.	1.3	82
23	Protective role of Parkin in skeletal muscle contractile and mitochondrial function. Journal of Physiology, 2018, 596, 2565-2579.	2.9	72
24	Adiponectin has a pivotal role in the cardioprotective effect of CPâ€3(iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice. FASEB Journal, 2018, 32, 807-818.	0.5	16
25	Mitochondrial Oxidative Stress Reduces the Immunopotency of Mesenchymal Stromal Cells in Adults With Coronary Artery Disease. Circulation Research, 2018, 122, 255-266.	4.5	46
26	61. Developing Sensitive Measurements of Mitochondrial Responses to Acute and Chronic Stress. Biological Psychiatry, 2018, 83, S25.	1.3	1
27	A Linear Fragment of Unacylated Ghrelin (UAG6â^'13) Protects Against Myocardial Ischemia/Reperfusion Injury in Mice in a Growth Hormone Secretagogue Receptor-Independent Manner. Frontiers in Endocrinology, 2018, 9, 798.	3.5	9
28	Loss of hepatic LRPPRC alters mitochondrial bioenergetics, regulation of permeability transition and trans-membrane ROS diffusion. Human Molecular Genetics, 2017, 26, 3186-3201.	2.9	36
29	Regulation of ULK1 Expression and Autophagy by STAT1. Journal of Biological Chemistry, 2017, 292, 1899-1909.	3.4	24
30	Formation of mitochondrialâ€derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. Journal of Physiology, 2016, 594, 5343-5362.	2.9	113
31	The rise of mitochondria in medicine. Mitochondrion, 2016, 30, 105-116.	3.4	349
32	Parkinson's Disease-Related Proteins PINK1 and Parkin Repress Mitochondrial Antigen Presentation. Cell, 2016, 166, 314-327.	28.9	429
33	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
34	A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome. Cell Reports, 2015, 13, 981-989.	6.4	113
35	Mitochondrial Vulnerability and Increased Susceptibility to Nutrient-Induced Cytotoxicity in Fibroblasts from Leigh Syndrome French Canadian Patients. PLoS ONE, 2015, 10, e0120767.	2.5	29
36	Interdependence of Parkin-Mediated Mitophagy and Mitochondrial Fission in Adult Mouse Hearts. Circulation Research, 2015, 117, 346-351.	4.5	172

Yan Burelle

#	Article	IF	CITATIONS
37	Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm. Journal of Applied Physiology, 2015, 118, 1161-1171.	2.5	66
38	Tissue-specific responses to the LRPPRC founder mutation in French Canadian Leigh Syndrome. Human Molecular Genetics, 2015, 24, 480-491.	2.9	41
39	Cyclosporine A Treatment Inhibits Abcc6-Dependent Cardiac Necrosis and Calcification following Coxsackievirus B3 Infection in Mice. PLoS ONE, 2015, 10, e0138222.	2.5	10
40	Histopathology and Mitochondrial Function in Liver‧pecific LRPPRC Knockout Mice. FASEB Journal, 2015, 29, 1036.2.	0.5	2
41	The Relationship between Muscle Fiber Type-Specific PGC-1α Content and Mitochondrial Content Varies between Rodent Models and Humans. PLoS ONE, 2014, 9, e103044.	2.5	104
42	An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2014, 189, e15-e62.	5.6	793
43	Mitochondrial Contagion Induced by Parkin Deficiency in <i>Drosophila</i> Hearts and Its Containment by Suppressing Mitofusin. Circulation Research, 2014, 114, 257-265.	4.5	129
44	Effect of eccentric versus concentric exercise training on mitochondrial function. Muscle and Nerve, 2014, 50, 803-811.	2.2	26
45	Role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in denervation-induced atrophy in aged muscle: facts and hypotheses. Longevity & Healthspan, 2013, 2, 13.	6.7	24
46	Mitochondrial morphology transitions and functions: implications for retrograde signaling?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R393-R406.	1.8	242
47	Autophagic flux and oxidative capacity of skeletal muscles during acute starvation. Autophagy, 2013, 9, 1604-1620.	9.1	59
48	Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy, 2013, 9, 1837-1851.	9.1	133
49	Different Timing of Changes in Mitochondrial Functions following Endurance Training. Medicine and Science in Sports and Exercise, 2012, 44, 217-224.	0.4	39
50	Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. American Journal of Physiology - Cell Physiology, 2012, 302, C629-C641.	4.6	170
51	Mitochondrial Dysfunction and Lipid Accumulation in the Human Diaphragm during Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1140-1149.	5.6	648
52	AMPK Activation Stimulates Autophagy and Ameliorates Muscular Dystrophy in the mdx Mouse Diaphragm. American Journal of Pathology, 2012, 181, 583-592.	3.8	194
53	Peroxisome proliferatorâ€activated receptor γ coactivator 1â€Î± gene transfer restores mitochondrial biomass and improves mitochondrial calcium handling in postâ€necrotic <i>mdx</i> mouse skeletal muscle. Journal of Physiology, 2012, 590, 5487-5502.	2.9	66
54	Mitochondria: Starving to reach quorum?. BioEssays, 2012, 34, 272-274.	2.5	17

YAN BURELLE

#	Article	IF	CITATIONS
55	Autophagy and Skeletal Muscles in Sepsis. PLoS ONE, 2012, 7, e47265.	2.5	96
56	Mitochondrial Functional Specialization in Glycolytic and Oxidative Muscle Fibers: Tailoring the Organelle for Optimal Function. FASEB Journal, 2012, 26, 887.19.	0.5	0
57	Cyclophilinâ€D is dispensable for atrophy and mitochondrial apoptotic signalling in denervated muscle. Journal of Physiology, 2011, 589, 855-861.	2.9	5
58	Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R544-R553.	1.8	60
59	Stress-induced opening of the permeability transition pore in the dystrophin-deficient heart is attenuated by acute treatment with sildenafil. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H144-H153.	3.2	77
60	Early predictors of cardiac decompensation in experimental volume overload. Molecular and Cellular Biochemistry, 2010, 338, 271-282.	3.1	25
61	Alterations in mitochondrial function as a harbinger of cardiomyopathy: Lessons from the dystrophic heart. Journal of Molecular and Cellular Cardiology, 2010, 48, 310-321.	1.9	43
62	Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 2009, 46, 420-430	1.9	56
63	Resistance to Ca ²⁺ -induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R659-R668.	1.8	79
64	The Mitochondrial Phenotype of Peripheral Muscle in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 1040-1047.	5.6	87
65	Implication of Cyclophilin D and Permeability Transition Pore in Mitochondrial Vulnerability of Compensated Heart Hypertrophy. FASEB Journal, 2008, 22, 1238.17.	0.5	1
66	Strainâ€Dependence in Susceptibility to Heart Failure: Role of Mitochondria. FASEB Journal, 2008, 22, .	0.5	0
67	Circulating lipids are lowered but pancreatic islet lipid metabolism and insulin secretion are unaltered in exercise-trained female rats. Applied Physiology, Nutrition and Metabolism, 2007, 32, 241-248.	1.9	10
68	A52. Chronic volume overload increases the vulnerability of cardiac mitochondria without affecting their basal functions. Journal of Molecular and Cellular Cardiology, 2006, 40, 865-866.	1.9	0
69	Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress. Journal of Molecular and Cellular Cardiology, 2006, 41, 998-1009.	1.9	45
70	Comparison of exogenous glucose, fructose and galactose oxidation during exercise using C-labelling. British Journal of Nutrition, 2006, 96, 56.	2.3	42
71	Disparate Regulation of Signaling Proteins after Exercise and Myocardial Infarction. Medicine and Science in Sports and Exercise, 2006, 38, 455-462.	0.4	13
72	Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. Journal of Physiology, 2006, 574, 319-327.	2.9	62

YAN BURELLE

#	Article	IF	CITATIONS
73	Short Term Training Attenuates Opening of the Mitochondrial Permeability Transition Pore Without Affecting Myocardial Function Following Ischemia-Reperfusion. Molecular and Cellular Biochemistry, 2006, 291, 39-47.	3.1	18
74	Exercise training induces respiratory substrate-specific decrease in Ca2+-induced permeability transition pore opening in heart mitochondria. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1549-H1557.	3.2	60
75	Regular exercise is associated with a protective metabolic phenotype in the rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1055-H1063.	3.2	103
76	Control of maximum metabolic rate in humans: Dependence on performance phenotypes. Molecular and Cellular Biochemistry, 2004, 256, 95-103.	3.1	13
77	Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers. Journal of Applied Physiology, 2002, 92, 2429-2438.	2.5	61
78	Differential metabolic fate of the carbon skeleton and amino-N of [13C]alanine and [15N]alanine ingested during prolonged exercise. Journal of Applied Physiology, 2002, 93, 499-504.	2.5	13
79	Effects of acute exercise on the gluconeogenic capacity of periportal and perivenous hepatocytes. Journal of Applied Physiology, 2001, 91, 1099-1104.	2.5	6
80	Oxidation of [¹³ C]glycerol ingested along with glucose during prolonged exercise. Journal of Applied Physiology, 2001, 90, 1685-1690.	2.5	13
81	Use of an α-glucosidase inhibitor to maintain glucose homoeostasis during postprandial exercise in intensively treated Type 1 diabetic subjects. Diabetic Medicine, 2001, 18, 739-744.	2.3	15
82	Oxidation of 13C-Glucose and 13C-Fructose Ingested as a Preexercise Meal: Effect of Carbohydrate Ingestion during Exercise. International Journal of Sport Nutrition, 1997, 7, 117-127.	1.7	8