Cheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2096997/publications.pdf Version: 2024-02-01

CHENCLI

#	Article	IF	CITATIONS
1	Enhancing the healing ability and charge transport thermal stability of a diketopyrrolopyrrole based conjugated polymer by incorporating coumarin groups in the side chains. Journal of Polymer Science, 2022, 60, 517-524.	3.8	7
2	New near-infrared absorbing conjugated electron donor–acceptor molecules with a fused tetrathiafulvalene–naphthalene diimide framework. Journal of Materials Chemistry C, 2022, 10, 2814-2820.	5.5	4
3	Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Materials Today Bio, 2022, 13, 100198.	5.5	28
4	A perylene five-membered ring diimide for organic semiconductors and π-expanded conjugated molecules. Chemical Communications, 2022, 58, 5100-5103.	4.1	9
5	Enhancement of the Thermoelectric Performance of <i>n</i> -Type Naphthalene Diimide-Based Conjugated Polymer by Engineering of Side Alkyl Chains. , 2022, 4, 521-527.		9
6	A Dual Functional Diketopyrrolopyrroleâ€Based Conjugated Polymer as Single Component Semiconducting Photoresist by Appending Azide Groups in the Side Chains. Advanced Science, 2022, 9, e2106087.	11.2	15
7	Double-Cable Conjugated Polymers with Pendant Rylene Diimides for Single-Component Organic Solar Cells. Accounts of Chemical Research, 2021, 54, 2227-2237.	15.6	67
8	Oxidase Mimetic Activity of a Metalloporphyrin-Containing Porous Organic Polymer and Its Applications for Colorimetric Detection of Both Ascorbic Acid and Glutathione. ACS Sustainable Chemistry and Engineering, 2021, 9, 5412-5421.	6.7	58
9	An Efficient Diazirineâ€Based Fourâ€Armed Crossâ€linker for Photoâ€patterning of Polymeric Semiconductors. Angewandte Chemie, 2021, 133, 21691-21698.	2.0	3
10	An Efficient Diazirineâ€Based Fourâ€Armed Crossâ€linker for Photoâ€patterning of Polymeric Semiconductors. Angewandte Chemie - International Edition, 2021, 60, 21521-21528.	13.8	27
11	Incorporation of hydrogenâ€bonding units into polymeric semiconductors toward boosting charge mobility, intrinsic stretchability, and selfâ€healing ability. SmartMat, 2021, 2, 347-366.	10.7	37
12	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 25499-25507.	13.8	31
13	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie, 2021, 133, 25703-25711.	2.0	3
14	Efficient N ₂ reduction with the VS ₂ electrocatalyst: identifying the active sites and unraveling the reaction pathway. Journal of Materials Chemistry A, 2021, 9, 24985-24992.	10.3	12
15	Enhanced Electrocatalytic Oxidation of Formate via Introducing Surface Reactive Oxygen Species to a CeO ₂ Substrate. ACS Applied Materials & Interfaces, 2021, 13, 51643-51651.	8.0	14
16	Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods. ACS Applied Materials & amp; Interfaces, 2021, 13, 49453-49461.	8.0	59
17	Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chinese Chemical Letters, 2020, 31, 865-868.	9.0	38
18	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 6151-6158.	8.0	16

#	Article	IF	CITATIONS
19	Gd (III) DOTAâ€Functionalized Phthalocyanine Nanodots for Magnetic Resonance Imaging and Photothermal/Photodynamic Therapy. Advanced Materials Interfaces, 2020, 7, 2000713.	3.7	7
20	A Naphthalenediimide-Based Polymer Acceptor with Multidirectional Orientations via Double-Cable Design. Macromolecules, 2020, 53, 9279-9286.	4.8	2
21	Miscibilityâ€Controlled Phase Separation in Doubleâ€Cable Conjugated Polymers for Singleâ€Component Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie - International Edition, 2020, 59, 21683-21692.	13.8	82
22	Miscibilityâ€Controlled Phase Separation in Doubleâ€Cable Conjugated Polymers for Singleâ€Component Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie, 2020, 132, 21867-21876.	2.0	18
23	Single-crystal field-effect transistors based on a fused-ring electron acceptor with high ambipolar mobilities. Journal of Materials Chemistry C, 2020, 8, 5370-5374.	5.5	57
24	Non-fullerene organic solar cells based on a BODIPY-polymer as electron donor with high photocurrent. Journal of Materials Chemistry C, 2020, 8, 2232-2237.	5.5	23
25	A selenophene substituted double-cable conjugated polymer enables efficient single-component organic solar cells. Journal of Materials Chemistry C, 2020, 8, 2790-2797.	5.5	29
26	Realizing lamellar nanophase separation in a double-cable conjugated polymer <i>via</i> a solvent annealing process. Polymer Chemistry, 2019, 10, 4584-4592.	3.9	22
27	Thermal-Driven Phase Separation of Double-Cable Polymers Enables Efficient Single-Component Organic Solar Cells. Joule, 2019, 3, 1765-1781.	24.0	124
28	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie, 2019, 131, 15678-15686.	2.0	11
29	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 15532-15540.	13.8	53
30	Small Band gap Boron Dipyrromethene-Based Conjugated Polymers for All-Polymer Solar Cells: The Effect of Methyl Units. Macromolecules, 2019, 52, 8367-8373.	4.8	18
31	Efficient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photonâ€ŧoâ€Current Ratio and Low Energetic Loss. Advanced Functional Materials, 2019, 29, 1902441.	14.9	43
32	Conjugated molecular dyads with diketopyrrolopyrrole-based conjugated backbones for single-component organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1565-1573.	5.9	21
33	Correlating crystallinity to photovoltaic performance in single-component organic solar cells via conjugated backbone engineering. Dyes and Pigments, 2019, 170, 107575.	3.7	14
34	Improving Electron Transport in a Double-Cable Conjugated Polymer via Parallel Perylenetriimide Design. Macromolecules, 2019, 52, 3689-3696.	4.8	32
35	Benzodithiopheneâ€Fused Perylene Bisimides as Electron Acceptors for Nonâ€Fullerene Organic Solar Cells with High Openâ€Circuit Voltage. ChemPhysChem, 2019, 20, 2696-2701.	2.1	5
36	A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. Journal of Materials Chemistry C, 2019, 7, 3802-3810.	5.5	21

#	Article	IF	CITATIONS
37	Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules, 2019, 52, 2214-2221.	4.8	26
38	Flexible Artificial Solid Electrolyte Interphase Formed by 1,3-Dioxolane Oxidation and Polymerization for Metallic Lithium Anodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 2479-2489.	8.0	40
39	Crystalline Conjugated Polymers for Organic Solar Cells: From Donor, Acceptor to Singleâ€Component. Chemical Record, 2019, 19, 962-972.	5.8	36
40	Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chinese Chemical Letters, 2019, 30, 222-224.	9.0	31
41	An Isoindigoâ€Based "Doubleâ€Cable―Conjugated Polymer for Single―Component Polymer Solar Cells. Chinese Journal of Chemistry, 2018, 36, 515-518.	4.9	26
42	Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2018, 6, 717-721.	5.5	22
43	A new strategy for designing polymer electron acceptors: electronrich conjugated backbone with electron-deficient side units. Science China Chemistry, 2018, 61, 824-829.	8.2	34
44	Ethynyl-linked perylene bisimide based electron acceptors for non-fullerene organic solar cells. Chinese Chemical Letters, 2018, 29, 325-327.	9.0	22
45	Multifunctional Diketopyrrolopyrroleâ€Based Conjugated Polymers with Perylene Bisimide Side Chains. Macromolecular Rapid Communications, 2018, 39, e1700611.	3.9	24
46	A near-infrared porphyrin-based electron acceptor for non-fullerene organic solar cells. Chinese Chemical Letters, 2018, 29, 371-373.	9.0	26
47	A Simple, Smallâ€Bandgap Porphyrinâ€Based Conjugated Polymer for Application in Organic Electronics. Macromolecular Rapid Communications, 2018, 39, e1800546.	3.9	7
48	Effect of Side Groups on the Photovoltaic Performance Based on Porphyrin–Perylene Bisimide Electron Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 32454-32461.	8.0	21
49	Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors. Optics Express, 2018, 26, 5827.	3.4	20
50	Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 344-347.	4.9	19
51	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 2694-2698.	13.8	232
52	An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells. Angewandte Chemie, 2017, 129, 2738-2742.	2.0	28
53	Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Physical Chemistry Chemical Physics, 2017, 19, 8069-8075.	2.8	31
54	Rücktitelbild: An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Nonâ€Fullerene Solar Cells (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2850-2850.	2.0	0

#	Article	IF	CITATIONS
55	Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Materials Chemistry Frontiers, 2017, 1, 1389-1395.	5.9	173
56	From Binary to Ternary: Improving the External Quantum Efficiency of Smallâ€Molecule Acceptorâ€Based Polymer Solar Cells with a Minute Amount of Fullerene Sensitization. Advanced Energy Materials, 2017, 7, 1700328.	19.5	54
57	Enhancing the performance of non-fullerene solar cells with polymer acceptors containing large-sized aromatic units. Organic Electronics, 2017, 47, 133-138.	2.6	14
58	Conjugated polymer acceptors based on fused perylene bisimides with a twisted backbone for non-fullerene solar cells. Polymer Chemistry, 2017, 8, 3300-3306.	3.9	45
59	Diazaisoindigo bithiophene and terthiophene copolymers for application in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2017, 55, 2691-2699.	2.3	14
60	Diketopyrrolopyrroleâ€Porphyrin Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2017, 12, 1861-1864.	3.3	11
61	Bisperylene bisimide based conjugated polymer as electron acceptor for polymer-polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2017, 35, 239-248.	3.8	49
62	Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains for Single-Component Organic Solar Cells. Chemistry of Materials, 2017, 29, 7073-7077.	6.7	93
63	"Double-Cable―Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells. Journal of the American Chemical Society, 2017, 139, 18647-18656.	13.7	119
64	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	21.0	155
65	Hybrid Corannulene–Perylene Dyes: Facile Synthesis and Optoelectronic Properties. Chemistry - an Asian Journal, 2016, 11, 2695-2699.	3.3	21
66	Synthesis and Applications of π-Extended Naphthalene Diimides. Chemical Record, 2016, 16, 873-885.	5.8	23
67	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	3.6	22
68	A systematical investigation of non-fullerene solar cells based on diketopyrrolopyrrole polymers as electron donor. Organic Electronics, 2016, 35, 112-117.	2.6	16
69	A perylene bisimide derivative with a LUMO level of â^4.56 eV for non-fullerene solar cells. Journal of Materials Chemistry C, 2016, 4, 4134-4137.	5.5	24
70	Perfluoroalkyl-substituted conjugated polymers as electron acceptors for all-polymer solar cells: the effect of diiodoperfluoroalkane additives. Journal of Materials Chemistry A, 2016, 4, 7736-7745.	10.3	31
71	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules, 2016, 49, 6431-6438.	4.8	71
72	Enhancing the photovoltaic performance of binary acceptor-based conjugated polymers incorporating methyl units. RSC Advances, 2016, 6, 98071-98079.	3.6	5

#	Article	IF	CITATIONS
73	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.	4.8	76
74	Methylated conjugated polymers based on diketopyrrolopyrrole and dithienothiophene for high performance field-effect transistors. Organic Electronics, 2016, 37, 366-370.	2.6	21
75	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	8.0	26
76	All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. Journal of Materials Chemistry A, 2016, 4, 6056-6063.	10.3	49
77	Poly(pentacyclic lactam-alt-diketopyrrolopyrrole) for field-effect transistors and polymer solar cells processed from non-chlorinated solvents. Polymer Chemistry, 2016, 7, 164-170.	3.9	18
78	Facile synthesis of a pyrrole-fused dibenzo[a,e]pentalene and its application as a new extended, ladder-type fused aromatic system. Chemical Communications, 2015, 51, 693-696.	4.1	26
79	Synthesis and Properties of Diazapentacene Diimides. Asian Journal of Organic Chemistry, 2014, 3, 114-117.	2.7	13
80	Synthesis and Properties of Heterocyclic Acene Diimides. Organic Letters, 2013, 15, 682-685.	4.6	51
81	Synthesis and Properties of Ethylene-Annulated Di(perylene diimides). Organic Letters, 2012, 14, 5278-5281.	4.6	43
82	Hybrid Rylene Arrays via Combination of Stille Coupling and C–H Transformation as High-Performance Electron Transport Materials. Journal of the American Chemical Society, 2012, 134, 5770-5773.	13.7	128
83	Fluorene-bridged polyphenylquinoxalines with high solubility and good thermal stability: Synthesis and properties. Chinese Journal of Polymer Science (English Edition), 2010, 28, 971-980.	3.8	6
84	Multi-Methyl-Substituted Polyphenylquinoxalines with High Solubility and High Glass Transition Temperatures: Synthesis and Characterization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 47, 248-253.	2.2	10
85	Direct Functionalization of Polycyclic Aromatics via Radical Perfluoroalkylation. Organic Letters, 2010, 12, 2374-2377.	4.6	50
86	Amphiphilic fluorescent copolymers nucleotides interactions. Journal of Applied Polymer Science, 2007, 105, 2532-2539.	2.6	3
87	Amphiphilic copolymer with pendant pyrenebutyryl hydrazide group: Synthesis, characterization, and recognition for carbonate anion. Journal of Applied Polymer Science, 2006, 101, 2371-2376.	2.6	6
88	Polysiloxane resins modified by bisglycidyl calix[4]arene: Preparation, characterization, and adsorption behavior toward metal ions. Journal of Applied Polymer Science, 2005, 95, 1310-1318.	2.6	8
89	Thermo- and pH-Sensitivities of Thiosemicarbazone-Incorporated, Fluorescent and Amphiphilic Poly(N-isopropylacrylamide). Macromolecular Chemistry and Physics, 2005, 206, 1870-1877.	2.2	15