Matthieu P Boisgontier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2096204/publications.pdf

Version: 2024-02-01

83 papers 2,806 citations

218677 26 h-index 223800 46 g-index

106 all docs

106 docs citations

106 times ranked 3165 citing authors

#	Article	IF	CITATIONS
1	I Sit but I Don't Know Why: Investigating the Multiple Precursors of Leisure-Time Sedentary Behaviors. Research Quarterly for Exercise and Sport, 2022, 93, 548-563.	1.4	7
2	Early-Life Socioeconomic Circumstances and Physical Activity in Older Age: Women Pay the Price. Psychological Science, 2022, 33, 212-223.	3.3	12
3	Normal aging affects unconstrained three-dimensional reaching against gravity with reduced vertical precision and increased co-contraction: a pilot study. Experimental Brain Research, 2022, 240, 1029.	1.5	2
4	From ego depletion to self-control fatigue: A review of criticisms along with new perspectives for the investigation and replication of a multicomponent phenomenon Motivation Science, 2022, 8, 19-32.	1.6	13
5	Better Subjective Sleep Quality Partly Explains the Association Between Self-Reported Physical Activity and Better Cognitive Function. Journal of Alzheimer's Disease, 2022, 87, 919-931.	2.6	7
6	Relationships between changes in self-reported physical activity, sedentary behaviour and health during the coronavirus (COVID-19) pandemic in France and Switzerland. Journal of Sports Sciences, 2021, 39, 699-704.	2.0	241
7	Why Are Individuals With Diabetes Less Active? The Mediating Role of Physical, Emotional, and Cognitive Factors. Annals of Behavioral Medicine, 2021, 55, 904-917.	2.9	14
8	Evolution of physical activity habits after a context change: The case of COVIDâ€19 lockdown. British Journal of Health Psychology, 2021, 26, 1135-1154.	3.5	49
9	The Theory of Effort Minimization in Physical Activity. Exercise and Sport Sciences Reviews, 2021, 49, 168-178.	3.0	65
10	Muscle strength explains the protective effect of physical activity against COVID-19 hospitalization among adults aged 50 years and older. Journal of Sports Sciences, 2021, 39, 2796-2803.	2.0	18
11	Muscle strength is associated with COVIDâ€19 hospitalization in adults 50 years of age or older. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1136-1143.	7.3	37
12	Perturbation of cortical activity elicits regional and age-dependent effects on unconstrained reaching behavior: a pilot study. Experimental Brain Research, 2021, 239, 3585-3600.	1.5	2
13	Cognitive-bias modification intervention to improve physical activity in patients following a rehabilitation programme: protocol for the randomised controlled IMPACT trial. BMJ Open, 2021, 11, e053845.	1.9	7
14	Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience, 2021, 475, 103-116.	2.3	5
15	Inhibitory control elicited by physical activity and inactivity stimuli: An electroencephalography study Motivation Science, 2021, 7, 386-399.	1.6	14
16	Association between physical-activity trajectories and cognitive decline in adults 50 years of age or older. Epidemiology and Psychiatric Sciences, 2021, 30, .	3.9	14
17	Life-Course Circumstances and Frailty in Old Age Within Different European Welfare Regimes: A Longitudinal Study With SHARE. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2020, 75, 1326-1335.	3.9	26
18	Daily Life Physical Activity and Concussion Symptoms in Adolescents. Canadian Journal of Occupational Therapy, 2020, 87, 364-371.	1.3	1

#	Article	IF	CITATIONS
19	Higher inhibitory control is required to escape the innate attraction to effort minimization. Psychology of Sport and Exercise, 2020, 51, 101781.	2.1	29
20	Do Welfare Regimes Moderate Cumulative Dis/advantages Over the Life Course? Cross-National Evidence from Longitudinal SHARE Data. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2020, 75, 1312-1325.	3.9	22
21	Physical Inactivity: A Behavioral Disorder in the Physical Therapist's Scope of Practice. Physical Therapy, 2020, 100, 743-746.	2.4	18
22	Physically active individuals look for more: An eyeâ€tracking study of attentional bias. Psychophysiology, 2020, 57, e13582.	2.4	18
23	Moving Sport and Exercise Science Forward: A Call for the Adoption of More Transparent Research Practices. Sports Medicine, 2020, 50, 449-459.	6.5	61
24	Relationship between decline in cognitive resources and physical activity Health Psychology, 2020, 39, 519-528.	1.6	46
25	Adverse Childhood Experiences, Depressive Symptoms, Functional Dependence, and Physical Activity: A Moderated Mediation Model. Journal of Physical Activity and Health, 2020, 17, 790-799.	2.0	28
26	Childhood socioeconomic circumstances and disability trajectories in older men and women: a European cohort study. European Journal of Public Health, 2019, 29, 50-58.	0.3	28
27	The role of adult socioeconomic and relational reserves regarding the effect of childhood misfortune on late-life depressive symptoms. SSM - Population Health, 2019, 8, 100434.	2.7	9
28	Welfare regimes modify the association of disadvantaged adult-life socioeconomic circumstances with self-rated health in old age. International Journal of Epidemiology, 2019, 48, 1352-1366.	1.9	18
29	Cognitive resources moderate the adverse impact of poor perceived neighborhood conditions on self-reported physical activity of older adults. Preventive Medicine, 2019, 126, 105741.	3.4	40
30	Opportunities to sit and stand trigger equivalent reward-related brain activity. International Journal of Psychophysiology, 2019, 141, 9-17.	1.0	6
31	Association between Adverse Childhood Experiences and Muscle Strength in Older Age. Gerontology, 2019, 65, 474-484.	2.8	21
32	Early-life socioeconomic circumstances explain health differences in old age, but not their evolution over time. Journal of Epidemiology and Community Health, 2019, 73, 703-711.	3.7	18
33	The effects of acute exercise on visuomotor adaptation, learning, and inter-limb transfer. Experimental Brain Research, 2019, 237, 1109-1127.	1.5	19
34	The Woman's Body (Not the Man's One) Is Used to Evaluate Sexual Desire: An Eye-Tracking Study of Automatic Visual Attention. Journal of Sexual Medicine, 2019, 16, 195-202.	0.6	2
35	Disadvantaged Early-Life Socioeconomic Circumstances Are Associated With Low Respiratory Function in Older Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1134-1140.	3.6	17
36	Tous paresseux�. , 2019, N° 110, 15-18.		0

#	Article	IF	CITATIONS
37	Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiology of Aging, 2018, 65, 109-120.	3.1	18
38	White matter microstructural organisation of interhemispheric pathways predicts different stages of bimanual coordination learning in young and older adults. European Journal of Neuroscience, 2018, 47, 446-459.	2.6	9
39	Effects of wrist tendon vibration and eye movements on manual aiming. Experimental Brain Research, 2018, 236, 847-857.	1.5	2
40	Behavioral and Neural Evidence of the Rewarding Value of Exercise Behaviors: A Systematic Review. Sports Medicine, 2018, 48, 1389-1404.	6.5	77
41	Anatomy of Subcortical Structures Predicts Age-Related Differences in Skill Acquisition. Cerebral Cortex, 2018, 28, 459-473.	2.9	25
42	Effect of Early- and Adult-Life Socioeconomic Circumstances on Physical Inactivity. Medicine and Science in Sports and Exercise, 2018, 50, 476-485.	0.4	46
43	Association of early- and adult-life socioeconomic circumstances with muscle strength in older age. Age and Ageing, 2018, 47, 398-407.	1.6	40
44	Avoiding sedentary behaviors requires more cortical resources than avoiding physical activity: An EEG study. Neuropsychologia, 2018, 119, 68-80.	1.6	61
45	Structure–function multiâ€scale connectomics reveals a major role of the frontoâ€striatoâ€thalamic circuit in brain aging. Human Brain Mapping, 2018, 39, 4663-4677.	3.6	45
46	Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Structure and Function, 2018, 223, 2039-2053.	2.3	15
47	Temptations toward behaviors minimizing energetic costs (BMEC) automatically activate physical activity goals in successful exercisers. Psychology of Sport and Exercise, 2017, 30, 110-117.	2.1	24
48	Two hands, one brain, and aging. Neuroscience and Biobehavioral Reviews, 2017, 75, 234-256.	6.1	94
49	Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning. Neurobiology of Aging, 2017, 58, 54-67.	3.1	37
50	Neural predictors of motor control and impact of visuoâ€proprioceptive information in youth. Human Brain Mapping, 2017, 38, 5628-5647.	3.6	6
51	Individual differences in brainstem and basal ganglia structure predict postural control and balance loss in young and older adults. Neurobiology of Aging, 2017, 50, 47-59.	3.1	52
52	Physical Activity Predicts Performance in an Unpracticed Bimanual Coordination Task. Frontiers in Psychology, 2017, 8, 249.	2.1	4
53	Nucleus accumbens and caudate atrophy predicts longer action selection times in young and old adults. Human Brain Mapping, 2016, 37, 4629-4639.	3.6	22
54	Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling. Gait and Posture, 2016, 45, 143-150.	1.4	12

#	Article	IF	Citations
55	The anova to mixed model transition. Neuroscience and Biobehavioral Reviews, 2016, 68, 1004-1005.	6.1	271
56	Manual aiming in healthy aging: does proprioceptive acuity make the difference?. Age, 2016, 38, 45.	3.0	30
57	Is standing postural control more impaired in young patients with hip-disarticulation than transfemoral amputation? A pilot study. Annals of Physical and Rehabilitation Medicine, 2015, 58, 354-356.	2.3	1
58	Age-related deficit in a bimanual joint position matching task is amplitude dependent. Frontiers in Aging Neuroscience, 2015, 7, 162.	3.4	13
59	Commentary: Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. Frontiers in Human Neuroscience, 2015, 9, 578.	2.0	О
60	Reduced Neural Differentiation Between Feedback Conditions After Bimanual Coordination Training with and without Augmented Visual Feedback. Cerebral Cortex, 2015, 25, 1958-1969.	2.9	42
61	Factors underlying age-related changes in discrete aiming. Experimental Brain Research, 2015, 233, 1733-1744.	1.5	27
62	Motor aging results from cerebellar neuron death. Trends in Neurosciences, 2015, 38, 127-128.	8.6	23
63	Complexity of Central Processing in Simple and Choice Multilimb Reaction-Time Tasks. PLoS ONE, 2014, 9, e90457.	2.5	38
64	Vision of the active limb impairs bimanual motor tracking in young and older adults. Frontiers in Aging Neuroscience, 2014, 6, 320.	3.4	16
65	Proprioception in the cerebellum. Frontiers in Human Neuroscience, 2014, 8, 212.	2.0	21
66	Aging and motor inhibition: A converging perspective provided by brain stimulation and imaging approaches. Neuroscience and Biobehavioral Reviews, 2014, 43, 100-117.	6.1	124
67	Both age and physical activity level impact on eye-hand coordination. Human Movement Science, 2014, 36, 80-96.	1.4	28
68	The effects of clothes on independent walking in toddlers. Gait and Posture, 2014, 39, 659-661.	1.4	45
69	Superimposed electrical stimulation improves mobility of pre-stiff thumbs after ulnar collateral ligament injury of the metacarpophalangeal joint: A randomized study. Annals of Physical and Rehabilitation Medicine, 2014, 57, 373-380.	2.3	2
70	A new method to assess temporal features of gait initiation with a single force plate. Gait and Posture, 2014, 39, 631-633.	1.4	6
71	Ageing of internal models: from a continuous to an intermittent proprioceptive control of movement. Age, 2013, 35, 1339-1355.	3.0	56
72	Proprioception: Bilateral inputs first. Neuroscience Letters, 2013, 534, 96-100.	2.1	8

#	Article	IF	CITATIONS
73	Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neuroscience and Biobehavioral Reviews, 2013, 37, 1824-1837.	6.1	230
74	Presbypropria: the effects of physiological ageing on proprioceptive control. Age, 2012, 34, 1179-1194.	3.0	54
75	Le coût attentionnel associé aux fonctions exécutives impliquées dans le contrÃ1e postural. Science Et Motricite, 2011, , 53-64.	0.3	7
76	Changes in the relative contribution of each leg to the control of quiet two-legged stance following unilateral plantar–flexor muscles fatigue. European Journal of Applied Physiology, 2010, 110, 207-213.	2.5	23
77	Effectiveness of a tongue-placed electrotactile biofeedback to improve ankle force sense following plantar-flexor muscles fatigue. Gait and Posture, 2009, 30, 556-559.	1.4	16
78	Effects of neuromuscular electrical stimulation on the range of motion recovery in hand proximal interphalangeal sprain. Science and Sports, 2009, 24, 192-195.	0.5	3
79	Muscle fatigue degrades force sense at the ankle joint. Gait and Posture, 2008, 28, 521-524.	1.4	53
80	Inter-individual variability in sensory weighting of a plantar pressure-based, tongue-placed tactile biofeedback for controlling posture. Neuroscience Letters, 2007, 421, 173-177.	2.1	25
81	How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing. Experimental Brain Research, 2007, 181, 547-554.	1.5	16
82	Tongue-placed tactile biofeedback suppresses the deleterious effects of muscle fatigue on joint position sense at the ankle. Experimental Brain Research, 2007, 183, 235-240.	1.5	31
83	Cognitive functions and physical activity in aging when energy is lacking. European Journal of Ageing, $0, 1$.	2.8	9