Anthony R Ives

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2096037/publications.pdf

Version: 2024-02-01

205 papers 23,706 citations

73 h-index 145 g-index

227 all docs

227 docs citations

times ranked

227

26036 citing authors

#	Article	IF	Citations
1	Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics. Ecology, 2022, 103, e03555.	1.5	11
2	Trade-Offs (and Constraints) in Organismal Biology. Physiological and Biochemical Zoology, 2022, 95, 82-112.	0.6	60
3	Statistical tests for non-independent partitions of large autocorrelated datasets. MethodsX, 2022, 9, 101660.	0.7	3
4	The success of a habitat specialist biological control agent in the face of disturbance. Ecosphere, 2022, 13, .	1.0	4
5	Coevolution, diversification and alternative states in twoâ€trophic communities. Ecology Letters, 2021, 24, 269-278.	3.0	1
6	Estimating and explaining the spread of COVID-19 at the county level in the USA. Communications Biology, 2021, 4, 60.	2.0	38
7	Effects of light and nutrients on intraspecific competition among midges from a shallow eutrophic lake. Ecological Entomology, 2021, 46, 955-963.	1.1	6
8	Ecosystem engineering alters densityâ€dependent feedbacks in an aquatic insect population. Ecology, 2021, 102, e03513.	1.5	3
9	Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 2021, 266, 112678.	4.6	23
10	Shifts in the partitioning of benthic and pelagic primary production within and across summers in Lake MÃ $\frac{1}{2}$ vatn, Iceland. Inland Waters, 2021, 11, 13-28.	1.1	11
11	phyr: An <scp>r</scp> package for phylogenetic speciesâ€distribution modelling in ecological communities. Methods in Ecology and Evolution, 2020, 11, 1455-1463.	2.2	80
12	Spatiotemporal trends in crop yields, yield variability, and yield gaps across the USA. Crop Science, 2020, 60, 2085-2101.	0.8	10
13	Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nature Ecology and Evolution, 2020, 4, 702-711.	3.4	21
14	Responses of benthic algae to nutrient enrichment in a shallow lake: Linking community production, biomass, and composition. Freshwater Biology, 2019, 64, 1833-1847.	1.2	14
15	Spatiotemporal variation in the sign and magnitude of ecosystem engineer effects on lake ecosystem production. Ecosphere, 2019, 10, e02760.	1.0	13
16	Climate change causes functionally colder winters for snow cover-dependent organisms. Nature Climate Change, 2019, 9, 886-893.	8.1	50
17	Inbreeding reduces long-term growth of Alpine ibex populations. Nature Ecology and Evolution, 2019, 3, 1359-1364.	3.4	58
18	The potential role of intrinsic processes in generating abrupt and quasiâ€synchronous tree declines during the Holocene. Ecology, 2019, 100, e02579.	1.5	11

#	Article	IF	Citations
19	R\$^{2}\$s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs. Systematic Biology, 2019, 68, 234-251.	2.7	174
20	Functional traits and community composition: A comparison among communityâ€weighted means, weighted correlations, and multilevel models. Methods in Ecology and Evolution, 2019, 10, 415-425.	2.2	78
21	A mathematical partitioning of the effects of habitat loss and habitat degradation on species abundance. Landscape Ecology, 2019, 34, 9-15.	1.9	5
22	Wildlife population changes across Eastern Europe after the collapse of socialism. Frontiers in Ecology and the Environment, 2018, 16, 77-81.	1.9	22
23	Responses of orb-weaving spider aggregations to spatiotemporal variation in lake-to-land subsidies at Lake Mývatn, Iceland. Polar Biology, 2018, 41, 1547-1554.	0.5	9
24	Early―and lateâ€flowering guilds respond differently to landscape spatial structure. Journal of Ecology, 2018, 106, 1033-1045.	1.9	14
25	Abrupt Change in Ecological Systems: Inference and Diagnosis. Trends in Ecology and Evolution, 2018, 33, 513-526.	4.2	178
26	Life history and habitat explain variation among insect pest populations subject to global change. Ecosphere, 2018, 9, e02274.	1.0	18
27	Reconstructing phylogeny from reducedâ€representation genome sequencing data without assembly or alignment. Molecular Ecology Resources, 2018, 18, 1482-1491.	2.2	4
28	Informative Irreproducibility and the Use of Experiments in Ecology. BioScience, 2018, 68, 746-747.	2.2	9
29	rr2: An R package to calculate \$R^2\$s for regression models. Journal of Open Source Software, 2018, 3, 1028.	2.0	78
30	Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 1-11.	1.4	33
31	Midgeâ€stabilized sediment drives the composition of benthic cladoceran communities in Lake Mývatn, Iceland. Ecosphere, 2017, 8, e01659.	1.0	5
32	The statistical need to include phylogeny in traitâ€based analyses of community composition. Methods in Ecology and Evolution, 2017, 8, 1192-1199.	2.2	45
33	Resource Gradients and the Distribution and Flowering of Butterwort, a Carnivorous Plant. Annales Zoologici Fennici, 2017, 54, 163-173.	0.2	4
34	Extreme events in lake ecosystem time series. Limnology and Oceanography Letters, 2017, 2, 63-69.	1.6	27
35	Characterizing global patterns of frozen ground with and without snow cover using microwave and MODIS satellite data products. Remote Sensing of Environment, 2017, 191, 168-178.	4.6	17
36	Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents. Oecologia, 2017, 183, 751-762.	0.9	48

#	Article	IF	Citations
37	Can functional traits account for phylogenetic signal in community composition?. New Phytologist, 2017, 214, 607-618.	3.5	39
38	Combined effects of night warming and light pollution on predator–prey interactions. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171195.	1.2	54
39	Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature, 2017, 550, 105-108.	13.7	106
40	Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers. Ecology, 2017, 98, 447-455.	1.5	30
41	Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops. PLoS ONE, 2017, 12, e0169167.	1.1	24
42	Three points to consider when choosing a <scp>LM</scp> or <scp>GLM</scp> test for count data. Methods in Ecology and Evolution, 2016, 7, 882-890.	2.2	133
43	Identifying consumer–resource population dynamics using paleoecological data. Ecology, 2016, 97, 361-371.	1.5	19
44	When natural habitat fails to enhance biological pest control – Five hypotheses. Biological Conservation, 2016, 204, 449-458.	1.9	388
45	Spatial patterns reveal strong abiotic and biotic drivers of zooplankton community composition in Lake MA½vatn, Iceland. Ecosphere, 2015, 6, 1-20.	1.0	21
46	<i>pez</i> : phylogenetics for the environmental sciences. Bioinformatics, 2015, 31, 2888-2890.	1.8	146
47	For testing the significance of regression coefficients, go ahead and logâ€transform count data. Methods in Ecology and Evolution, 2015, 6, 828-835.	2.2	162
48	An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. BMC Genomics, 2015, 16, 522.	1.2	143
49	Behavioral Flexibility and the Evolution of Primate Social States. PLoS ONE, 2014, 9, e114099.	1.1	28
50	Macroevolution of plant defenses against herbivores in the evening primroses. New Phytologist, 2014, 203, 267-279.	3.5	61
51	Species interactions and a chain of indirect effects driven by reduced precipitation. Ecology, 2014, 95, 486-494.	1.5	53
52	Direct and indirect effects of warming on aphids, their predators, and ant mutualists. Ecology, 2014, 95, 1479-1484.	1.5	81
53	Temperature effects on longâ€ŧerm population dynamics in a parasitoid–host system. Ecological Monographs, 2014, 84, 457-476.	2.4	35
54	Intrinsic and extrinsic drivers of succession: effects of habitat age and season on an aquatic insect community. Ecological Entomology, 2014, 39, 316-324.	1.1	10

#	Article	IF	CITATIONS
55	Phylogenetic Regression for Binary Dependent Variables. , 2014, , 231-261.		75
56	Multilevel statistical models and the analysis of experimental data. Ecology, 2013, 94, 1479-1486.	1.5	8
57	Are rapid transitions between invasive and native species caused by alternative stable states, and does it matter?. Ecology, 2013, 94, 2207-2219.	1.5	47
58	Phylogenetic traitâ€based analyses of ecological networks. Ecology, 2013, 94, 2321-2333.	1.5	74
59	Coevolution and the Effects of Climate Change on Interacting Species. PLoS Biology, 2013, 11, e1001685.	2.6	66
60	Foraging efficiency and the fitness consequences of spatial marking by ladybeetle larvae. Oikos, 2013, 122, 1238-1246.	1.2	4
61	Detecting dynamical changes in nonlinear time series using locally linear stateâ€space models. Ecosphere, 2012, 3, 1-15.	1.0	56
62	Seeing the forest and the trees: multilevel models reveal both species and community patterns. Ecosphere, 2012, 3, 1-16.	1.0	49
63	Coexistence in tropical forests through asynchronous variation in annual seed production. Ecology, 2012, 93, 2073-2084.	1.5	84
64	Pollinator effectiveness varies with experimental shifts in flowering time. Ecology, 2012, 93, 803-814.	1.5	84
65	Unexpected Demography in the Recovery of an Endangered Primate Population. PLoS ONE, 2012, 7, e44407.	1.1	22
66	Phylogenetic diversity–area curves. Ecology, 2012, 93, S31.	1.5	46
67	Contamination and management of resistance evolution to high-dose transgenic insecticidal crops. Theoretical Ecology, 2012, 5, 195-209.	0.4	21
68	Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data. PLoS ONE, 2012, 7, e41010.	1.1	638
69	Response of Coccinellid Larvae to Conspecific and Heterospecific Larval Tracks: A Mechanism That Reduces Cannibalism and Intraguild Predation. Environmental Entomology, 2011, 40, 103-110.	0.7	13
70	Evidence for a Trade-Off between Host-Range Breadth and Host-Use Efficiency in Aphid Parasitoids. American Naturalist, 2011, 177, 389-395.	1.0	56
71	The evolution of resistance to two-toxin pyramid transgenic crops., 2011, 21, 503-515.		83
72	Climate Change and Elevated Extinction Rates of Reptiles from Mediterranean Islands. American Naturalist, 2011, 177, 119-129.	1.0	71

#	Article	IF	CITATIONS
73	Why do stigmas move in a flexistylous plant?. Journal of Evolutionary Biology, 2011, 24, 497-504.	0.8	9
74	Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecology Letters, 2011, 14, 69-74.	3.0	189
75	Intraguild predation on the parasitoid Aphidius ervi by the generalist predator Harmonia axyridis: the threat and its avoidance. Entomologia Experimentalis Et Applicata, 2011, 138, 193-201.	0.7	43
76	Alternative stable states explain unpredictable biological control of Salvinia molesta in Kakadu. Nature, 2011, 470, 86-89.	13.7	76
77	The potential for hyperparasitism to compromise biological control: Why don't hyperparasitoids drive their primary parasitoid hosts extinct?. Biological Control, 2011, 58, 167-173.	1.4	48
78	Generalized linear mixed models for phylogenetic analyses of community structure. Ecological Monographs, 2011, 81, 511-525.	2.4	196
79	Novel pests and technologies: risk assessment in agroecosystems using simple models in the face of uncertainties. Current Opinion in Environmental Sustainability, 2011, 3, 100-104.	3.1	3
80	Weak population regulation in ecological time series. Ecology Letters, 2010, 13, 21-31.	3.0	57
81	Niche saturation reveals resource partitioning among consumers. Ecology Letters, 2010, 13, 338-348.	3.0	74
82	Mutualisms in a changing world: an evolutionary perspective. Ecology Letters, 2010, 13, 1459-1474.	3.0	442
83	Phylogenetic Logistic Regression for Binary Dependent Variables. Systematic Biology, 2010, 59, 9-26.	2.7	412
84	Breakdown in Postmating Isolation and the Collapse of a Species Pair through Hybridization. American Naturalist, 2010, 175, 11-26.	1.0	93
85	Phylogenetic Metrics of Community Similarity. American Naturalist, 2010, 176, E128-E142.	1.0	85
86	Analysis of ecological time series with ARMA(<i>p</i> , <i>q</i>) models. Ecology, 2010, 91, 858-871.	1.5	89
87	Temporal, spatial, and betweenâ€host comparisons of patterns of parasitism in lake zooplankton. Ecology, 2010, 91, 3322-3331.	1.5	43
88	New multivariate tests for phylogenetic signal and trait correlations applied to ecophysiological phenotypes of nine <i>Manglietia</i> species. Functional Ecology, 2009, 23, 1059-1069.	1.7	29
89	Species Response to Environmental Change: Impacts of Food Web Interactions and Evolution. Science, 2009, 323, 1347-1350.	6.0	202
90	Environmental variation in ecological communities and inferences from singleâ€species data. Ecology, 2009, 90, 1268-1278.	1.5	12

#	Article	IF	CITATIONS
91	Rapid evolution, seasonality, and the termination of parasite epidemics. Ecology, 2009, 90, 1441-1448.	1.5	60
92	Longâ€ŧerm disease dynamics in lakes: causes and consequences of chytrid infections in ⟨i⟩Daphnia⟨ i⟩ populations. Ecology, 2009, 90, 132-144.	1.5	38
93	Accelerate Synthesis in Ecology and Environmental Sciences. BioScience, 2009, 59, 699-701.	2.2	132
94	Pea aphid dropping behavior diminishes foraging efficiency of a predatory ladybeetle. Entomologia Experimentalis Et Applicata, 2008, 127, 118-124.	0.7	47
95	High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature, 2008, 452, 84-87.	13.7	102
96	Morphometrics of the Avian Small Intestine Compared with That of Nonflying Mammals: A Phylogenetic Approach. Physiological and Biochemical Zoology, 2008, 81, 526-550.	0.6	248
97	STATEâ€"SPACE MODELS LINK ELK MOVEMENT PATTERNS TO LANDSCAPE CHARACTERISTICS IN YELLOWSTONE NATIONAL PARK. Ecological Monographs, 2007, 77, 285-299.	2.4	148
98	DISPERSAL, DENSITY DEPENDENCE, AND POPULATION DYNAMICS OF A FUNGAL MICROBE ON LEAF SURFACES. Ecology, 2007, 88, 1513-1524.	1.5	26
99	Within-Species Variation and Measurement Error in Phylogenetic Comparative Methods. Systematic Biology, 2007, 56, 252-270.	2.7	398
100	DENSITY DEPENDENCE VS. INDEPENDENCE, AND IRREGULAR POPULATION DYNAMICS OF A SWALLOW-WORT FRUIT FLY. Ecology, 2007, 88, 1466-1475.	1.5	14
101	Stability and Diversity of Ecosystems. Science, 2007, 317, 58-62.	6.0	1,193
102	Phylogenetic Measures of Biodiversity. American Naturalist, 2007, 169, E68-E83.	1.0	398
103	Separating the determinants of phylogenetic community structure. Ecology Letters, 2007, 10, 917-925.	3.0	206
104	EFFECTS OF SPECIES DIVERSITY ON COMMUNITY BIOMASS PRODUCTION CHANGE OVER THE COURSE OF SUCCESSION. Ecology, 2007, 88, 929-939.	1.5	112
105	Presence of an unsuitable host diminishes the competitive superiority of an insect parasitoid: a distraction effect. Population Ecology, 2007, 49, 347-355.	0.7	24
106	Phylogenetic Analysis of Trophic Associations. American Naturalist, 2006, 168, E1-E14.	1.0	145
107	Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: a whole-lake experiment. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 383-393.	0.7	93
108	The structure and stability of model ecosystems assembled in a variable environment. Oikos, 2006, 114, 451-464.	1.2	3

#	Article	IF	Citations
109	Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator-prey system. Journal of Animal Ecology, 2006, 75, 497-505.	1.3	109
110	Sexual size dimorphism in a Drosophila clade, the D. obscura group. Zoology, 2006, 109, 318-330.	0.6	63
111	Learning by the parasitoid wasp, Aphidius ervi (Hymenoptera: Braconidae), alters individual fixed preferences for pea aphid color morphs. Oecologia, 2006, 150, 172-179.	0.9	42
112	Statistics For Correlated Data: Phylogenies, Space, And Time. , 2006, 16, 20-32.		108
113	EVOLUTION OF PERIODICITY IN PERIODICAL CICADAS. Ecology, 2005, 86, 3200-3211.	1.5	22
114	Empirically Motivated Ecological Theory 1. Ecology, 2005, 86, 3137-3138.	1.5	3
115	ESTIMATING FLUCTUATING VITAL RATES FROM TIME-SERIES DATA: A CASE STUDY OF APHID BIOCONTROL. Ecology, 2005, 86, 740-752.	1.5	25
116	Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. Oikos, 2005, 108, 275-282.	1.2	119
117	Quantitative Bioscience for the 21st Century. BioScience, 2005, 55, 511.	2.2	25
118	TESTING VITAMIN B AS A HOME REMEDY AGAINST MOSQUITOES. Journal of the American Mosquito Control Association, 2005, 21, 213-217.	0.2	24
119	DIVERSITY–PRODUCTIVITY RELATIONSHIPS IN STREAMS VARY AS A FUNCTION OF THE NATURAL DISTURBANCE REGIME. Ecology, 2005, 86, 716-726.	1.5	97
120	<i>Aphidius ervi</i> (Hymenoptera: Braconidae) Increases Its Adult Size by Disrupting Host Wing Development. Environmental Entomology, 2004, 33, 1523-1527.	0.7	11
121	The Synergistic Effects of Stochasticity and Dispersal on Population Densities. American Naturalist, 2004, 163, 375-387.	1.0	76
122	Population genetics of transgene containment. Ecology Letters, 2004, 7, 213-220.	3.0	49
123	The collapse of cycles in the dynamics of North American grouse populations. Ecology Letters, 2004, 7, 1135-1142.	3.0	30
124	A synthesis of subdisciplines: predator-prey interactions, and biodiversity and ecosystem functioning. Ecology Letters, 2004, 8, 102-116.	3.0	337
125	Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos, 2004, 104, 437-450.	1.2	203
126	Food-web interactions govern the resistance of communities after non-random extinctions. Nature, 2004, 429, 174-177.	13.7	227

#	Article	IF	CITATIONS
127	Scale-dependent indirect interactions between two prey species through a shared predator. Oikos, 2003, 102, 505-514.	1.2	35
128	The effects of an exotic fish invasion on the prey communities of two lakes. Journal of Animal Ecology, 2003, 72, 331-342.	1.3	69
129	Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecology Letters, 2003, 6, 857-865.	3.0	447
130	Species interactions can explain Taylor's power law for ecological time series. Nature, 2003, 422, 65-68.	13.7	176
131	TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. Evolution; International Journal of Organic Evolution, 2003, 57, 717-745.	1.1	3,594
132	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. Ecology, 2003, 84, 91-107.	1.5	299
133	POPULATION DYNAMICS ACROSS GEOGRAPHICAL RANGES: TIME-SERIES ANALYSES OF THREE SMALL GAME SPECIES. Ecology, 2003, 84, 2654-2667.	1.5	144
134	Food web dynamics in correlated and autocorrelated environments. Theoretical Population Biology, 2003, 64, 369-384.	0.5	89
135	The effect of parasitoid host-size preference on host population growth rates: an example ofAphidius colemaniandAphis glycines. Ecological Entomology, 2003, 28, 542-550.	1.1	72
136	ESTIMATING COMMUNITY STABILITY AND ECOLOGICAL INTERACTIONS FROM TIME-SERIES DATA. Ecological Monographs, 2003, 73, 301-330.	2.4	435
137	Consequences of recurrent gene flow from crops to wild relatives. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1879-1886.	1.2	132
138	Single-Leaf Resolution of the Temporal Population Dynamics of Aureobasidium pullulans on Apple Leaves. Applied and Environmental Microbiology, 2003, 69, 4892-4900.	1.4	18
139	TESTING FOR PHYLOGENETIC SIGNAL IN COMPARATIVE DATA: BEHAVIORAL TRAITS ARE MORE LABILE. Evolution; International Journal of Organic Evolution, 2003, 57, 717.	1.1	385
140	INTERACTIONS BETWEEN SPECIALIST AND GENERALIST NATURAL ENEMIES: PARASITOIDS, PREDATORS, AND PEA APHID BIOCONTROL. , 2003, 84, 91.		1
141	ECOLOGY: Inbreeding and Metapopulations. Science, 2002, 295, 454-455.	6.0	18
142	COMPETITION BETWEEN NATIVE AND INTRODUCED PARASITOIDS OF APHIDS: NONTARGET EFFECTS AND BIOLOGICAL CONTROL. Ecology, 2002, 83, 2745-2757.	1.5	53
143	DYNAMICS OF THE RELATIONSHIP BETWEEN A GENERALIST PREDATOR AND SLUGS OVER FIVE YEARS. Ecology, 2002, 83, 137-147.	1.5	104
144	General Relationships between Species Diversity and Stability in Competitive Systems. American Naturalist, 2002, 159, 388-395.	1.0	113

#	Article	IF	Citations
145	Consumer-resource interactions and cyclic population dynamics of Tanytarsus gracilentus (Diptera:) Tj ETQq $1\ 1\ 0$.784314 rg 1.3	gBT /Overlo
146	Evolution of resistance to Bt crops: directional selection in structured environments. Ecology Letters, 2002, 5, 792-801.	3.0	95
147	COMPENSATORY DYNAMICS IN ZOOPLANKTON COMMUNITY RESPONSES TO ACIDIFICATION: MEASUREMENT AND MECHANISMS., 2001, 11, 1060-1072.		83
148	GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID. Ecology, 2001, 82, 705-716.	1.5	263
149	Environmental forcing and high amplitude fluctuations in the population dynamics of the tropical butterfly Acraea acerata (Lepidoptera: Nymphalidae). Journal of Animal Ecology, 2001, 70, 1032-1045.	1.3	34
150	BIOLOGICAL CONTROL IN DISTURBED AGRICULTURAL SYSTEMS AND THE RAPID RECOVERY OF PARASITOID POPULATIONS. , 2001, 11, 1224-1234.		43
151	ECOLOGICAL HISTORY AFFECTS ZOOPLANKTON COMMUNITY RESPONSES TO ACIDIFICATION. Ecology, 2001, 82, 2984-3000.	1.5	36
152	ECOLOGICAL HISTORY AFFECTS ZOOPLANKTON COMMUNITY RESPONSES TO ACIDIFICATION. , 2001, 82, 2984.		2
153	GENERALIST PREDATORS DISRUPT BIOLOGICAL CONTROL BY A SPECIALIST PARASITOID., 2001, 82, 705.		17
154	PERIODIC MORTALITY EVENTS IN PREDATOR–PREY SYSTEMS. Ecology, 2000, 81, 3330-3340.	1.5	16
155	Periodic Mortality Events in Predator-Prey Systems. Ecology, 2000, 81, 3330.	1.5	39
156	Stability and species richness in complex communities. Ecology Letters, 2000, 3, 399-411.	3.0	213
157	Spatially aggregated parasitism on pea aphids, Acyrthosiphon pisum, caused by random foraging behavior of the parasitoid Aphidius ervi. Oikos, 2000, 91, 66-76.	1.2	19
158	Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions. Oecologia, 2000, 125, 543-548.	0.9	79
159	COMPENSATORY DYNAMICS IN PLANKTONIC COMMUNITY RESPONSES TO pH PERTURBATIONS. Ecology, 2000, 81, 387-398.	1.5	105
160	Stochasticity and statisticians in environmental biology. Trends in Ecology and Evolution, 2000, 15, 485-486.	4.2	1
161	Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods. American Naturalist, 2000, 155, 346-364.	1.0	761
162	COMPENSATORY DYNAMICS IN PLANKTONIC COMMUNITY RESPONSES TO pH PERTURBATIONS. , 2000, 81, 387.		11

#	Article	IF	Citations
163	Inferring Hostâ€Parasitoid Stability from Patterns of Parasitism among Patches. American Naturalist, 1999, 154, 489-496.	1.0	18
164	COMMUNITY INTERACTION WEBS AND ZOOPLANKTON RESPONSES TO PLANKTIVORY MANIPULATIONS. Ecology, 1999, 80, 1405-1421.	1.5	84
165	An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values. American Zoologist, 1999, 39, 374-388.	0.7	540
166	Can natural enemies enforce geographical range limits?. Ecography, 1999, 22, 268-276.	2.1	45
167	Stability and Variability in Competitive Communities. Science, 1999, 286, 542-544.	6.0	295
168	Reptile Extinctions on Landâ€Bridge Islands: Lifeâ€History Attributes and Vulnerability to Extinction. American Naturalist, 1999, 153, 1-25.	1.0	465
169	Variability and Parasitoid Foraging Efficiency: A Case Study of Pea Aphids and Aphidius ervi. American Naturalist, 1999, 154, 652-673.	1.0	84
170	The role of vision and color in the close proximity foraging behavior of four coccinellid species. Oecologia, 1998, 115, 287-292.	0.9	86
171	Local Explanations of Landscape Patterns: Can Analytical Approaches Approximate Simulation Models of Spatial Processes?. Ecosystems, 1998, 1, 35-51.	1.6	35
172	COMPLEX DYNAMICS IN STOCHASTIC TRITROPHIC MODELS. Ecology, 1998, 79, 1039-1052.	1.5	33
173	COMPLEX DYNAMICS IN STOCHASTIC TRITROPHIC MODELS. , 1998, 79, 1039.		1
174	Metapopulation Dynamics and Pest Control in Agricultural Systems. American Naturalist, 1997, 149, 220-246.	1.0	85
175	Can Sublethal Parasitism Destabilize Predator-Prey Population Dynamics? A Model of Snowshoe Hares, Predators and Parasites. Journal of Animal Ecology, 1997, 66, 265.	1.3	78
176	SPATIAL VARIATION IN ABUNDANCE CREATED BY STOCHASTIC TEMPORAL VARIATION. Ecology, 1997, 78, 1907-1913.	1.5	40
177	Aggregation and the Coexistence of Competing Parasitoid Species. Theoretical Population Biology, 1997, 52, 167-178.	0.5	22
178	A polymorphism maintained by opposite patterns of parasitism and predation. Nature, 1997, 388, 269-272.	13.7	215
179	Effectiveness of three turacos as seed dispersers in a tropical montane forest. Oecologia, 1997, 112, 94-103.	0.9	89
180	Evolution of Insect Resistance to Bacillus thuringiensis-Transformed Plants. Science, 1996, 273, 1412-1413.	6.0	28

#	Article	IF	CITATIONS
181	The Failure of a Parasitoid to Persist with a Superabundant Host: The Importance of the Numerical Response. Oikos, 1996, 75, 269.	1.2	16
182	Measuring aggregation of parasites at different host population levels. Parasitology, 1996, 112, 581-587.	0.7	50
183	Hyperparasitoid aggregation in response to variation in Aphidius ervi host density at three spatial scales. Ecological Entomology, 1996, 21, 249-258.	1.1	29
184	Bottle or Big-Scale Studies: How do we do Ecology? Ecology, 1996, 77, 681-685.	1.5	41
185	Predicting the Response of Populations to Environmental Change. Ecology, 1995, 76, 926-941.	1.5	168
186	Spatial Heterogeneity and Host-Parasitoid Population Dynamics: Do We Need to Study Behavior?. Oikos, 1995, 74, 366.	1.2	32
187	Measuring Competition in a Spatially Heterogeneous Environment. American Naturalist, 1995, 146, 911-936.	1.0	13
188	Measuring Resilience in Stochastic Systems. Ecological Monographs, 1995, 65, 217-233.	2.4	239
189	Species Compensation and Complementarity in Ecosystem Function. , 1995, , 224-239.		142
190	Response of a Predator to Variation in Prey Density at Three Hierarchical Scales Lady Beetles Feeding on Aphids. Ecology, 1993, 74, 1929-1938.	1.5	166
191	Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts. Systematic Biology, 1992, 41, 18.	2.7	215
192	Nest Placement Relative to Food and Its Influence on the Evolution of Avian Coloniality. American Naturalist, 1992, 139, 205-217.	1.0	23
193	Continuous-Time Models of Host-Parasitoid Interactions. American Naturalist, 1992, 140, 1-29.	1.0	79
194	Density-Dependent and Density-Independent Parasitoid Aggregation in Model Host-Parasitoid Systems. American Naturalist, 1992, 140, 912-937.	1.0	69
195	Aggregation and Coexistence in a Carrion Fly Community. Ecological Monographs, 1991, 61, 75-94.	2.4	236
196	Chaos in time and space. Nature, 1991, 353, 214-215.	13.7	4
197	The Optimal Clutch Size of Insects When Many Females Oviposit Per Patch. American Naturalist, 1989, 133, 671-687.	1.0	84
198	Covariance, coexistence and the population dynamics of two competitors using a patchy resource. Journal of Theoretical Biology, 1988, 133, 345-361.	0.8	90

ANTHONY R IVES

#	ARTICLE	IF	CITATIONS
199	Stochasticity in invertebrate clutch-size models. Theoretical Population Biology, 1988, 33, 79-101.	0.5	25
200	Antipredator Behavior and the Population Dynamics of Simple Predator-Prey Systems. American Naturalist, 1987, 130, 431-447.	1.0	194
201	Testing parent-offspring conflicts in insect parasitoids. Trends in Ecology and Evolution, 1987, 2, 231-233.	4.2	2
202	Competition within and between species in a patchy environment: Relations between microscopic and macroscopic models. Journal of Theoretical Biology, 1985, 115, 65-92.	0.8	170
203	Population dynamics and species interactions. , 0, , 62-74.		0
204	Opposing trends in survival and recruitment slow the recovery of a historically overexploited \Bar{i} -shery. Canadian Journal of Fisheries and Aquatic Sciences, 0, , .	0.7	1
205	â€~Scalescape': an R package for estimating distance-weighted landscape effects on an environmental response. Landscape Ecology, 0, , .	1.9	4