Alan G Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095709/publications.pdf

Version: 2024-02-01

428 papers 34,850 citations

99 h-index 161 g-index

431 all docs

431 does citations

times ranked

431

15298 citing authors

#	Article	IF	CITATIONS
1	Fourier transform ion cyclotron resonance mass spectrometry: A primer., 1998, 17, 1-35.		1,733
2	Fourier transform ion cyclotron resonance spectroscopy. Chemical Physics Letters, 1974, 25, 282-283.	1.2	959
3	Petroleomics:  The Next Grand Challenge for Chemical Analysis. Accounts of Chemical Research, 2004, 37, 53-59.	7.6	698
4	Kendrick Mass Defect Spectrum:Â A Compact Visual Analysis for Ultrahigh-Resolution Broadband Mass Spectra. Analytical Chemistry, 2001, 73, 4676-4681.	3.2	697
5	Tailored excitation for Fourier transform ion cyclotron mass spectrometry. Journal of the American Chemical Society, 1985, 107, 7893-7897.	6.6	638
6	Petroleomics: Chemistry of the underworld. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18090-18095.	3.3	581
7	Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry, 2003, 75, 1275-1284.	3.2	537
8	A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. Journal of the American Society for Mass Spectrometry, 1998, 9, 225-233.	1.2	478
9	The role of electron capture dissociation in biomolecular analysis. Mass Spectrometry Reviews, 2005, 24, 201-222.	2.8	453
10	External accumulation of ions for enhanced electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 1997, 8, 970-976.	1.2	442
11	Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Fuels, 2001, 15, 1505-1511.	2.5	383
12	Resolution of $11\hat{A}000$ Compositionally Distinct Components in a Single Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrum of Crude Oil. Analytical Chemistry, 2002, 74, 4145-4149.	3.2	375
13	Electron Capture Dissociation and Infrared Multiphoton Dissociation MS/MS of an N-Glycosylated Tryptic Peptide To Yield Complementary Sequence Information. Analytical Chemistry, 2001, 73, 4530-4536.	3.2	362
14	Frequency-sweep fourier transform ion cyclotron resonance spectroscopy. Chemical Physics Letters, 1974, 26, 489-490.	1.2	352
15	KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1542-1547.	3.3	345
16	High-Resolution Mass Spectrometers. Annual Review of Analytical Chemistry, 2008, 1, 579-599.	2.8	311
17	Reading Chemical Fine Print:  Resolution and Identification of 3000 Nitrogen-Containing Aromatic Compounds from a Single Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrum of Heavy Petroleum Crude Oil. Energy & Spectrum Oil Heavy Petroleum Crude Oil. Energy & Spectrum Oil Heavy Petroleum Crude Oil. Energy & Spectrum Oil Heavy Petroleum Crude Oil Heavy Pe	2.5	310
18	Key Generation From Wireless Channels: A Review. IEEE Access, 2016, 4, 614-626.	2.6	306

#	Article	IF	CITATIONS
19	Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory and applications. International Journal of Mass Spectrometry and Ion Processes, 1996, 157-158, 5-37.	1.9	304
20	Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 2002, 33, 743-759.	0.9	292
21	Probing Protein Ligand Interactions by Automated Hydrogen/Deuterium Exchange Mass Spectrometry. Analytical Chemistry, 2006, 78, 1005-1014.	3.2	289
22	Free electron laser-Fourier transform ion cyclotron resonance mass spectrometry facility for obtaining infrared multiphoton dissociation spectra of gaseous ions. Review of Scientific Instruments, 2005, 76, 023103.	0.6	287
23	An ultrahighâ€resolution mass spectrometry index to estimate natural organic matter lability. Rapid Communications in Mass Spectrometry, 2015, 29, 2385-2401.	0.7	276
24	Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development. International Journal of Mass Spectrometry, 2000, 200, 331-356.	0.7	271
25	Petroleomics: MS Returns to Its Roots Analytical Chemistry, 2005, 77, 20 A-27 A.	3.2	271
26	lonization and Fragmentation of Humic Substances in Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2002, 74, 4397-4409.	3.2	269
27	Fourier transform ion cyclotron resonance mass spectrometry. Accounts of Chemical Research, 1985, 18, 316-322.	7.6	264
28	Two- and Three-Dimensional van Krevelen Diagrams:Â A Graphical Analysis Complementary to the Kendrick Mass Plot for Sorting Elemental Compositions of Complex Organic Mixtures Based on Ultrahigh-Resolution Broadband Fourier Transform Ion Cyclotron Resonance Mass Measurements. Analytical Chemistry, 2004, 76, 2511-2516.	3.2	257
29	A High-performance Modular Data System for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. , 1996, 10, 1839-1844.		248
30	Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Complex Mixture Analysis. Analytical Chemistry, 2006, 78, 5906-5912.	3.2	246
31	Combined Electron Capture and Infrared Multiphoton Dissociation for Multistage MS/MS in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Analytical Chemistry, 2003, 75, 3256-3262.	3.2	241
32	Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. International Journal of Mass Spectrometry, 2011, 306, 246-252.	0.7	221
33	High Resolution Mass Spectrometry. Analytical Chemistry, 2012, 84, 708-719.	3.2	216
34	A Novel 9.4 Tesla FTICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range. Journal of the American Society for Mass Spectrometry, 2011, 22, 1343-1351.	1.2	205
35	Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 2005, 36, 1117-1134.	0.9	201
36	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance at 9.4 T., 1996, 10, 1824-1828.		200

#	Article	IF	Citations
37	Fourier transform ion cyclotron resonance mass spectrometry: the teenage years. Analytical Chemistry, 1991, 63, 215A-229A.	3.2	199
38	Identification of Novel Interactions in HIV-1 Capsid Protein Assembly by High-resolution Mass Spectrometry. Journal of Molecular Biology, 2003, 325, 759-772.	2.0	198
39	Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environmental Science & Environmental S	4.6	197
40	Parts-Per-Billion Fourier Transform Ion Cyclotron Resonance Mass Measurement Accuracy with a $\hat{a} \in \mathcal{C}$ alibration Equation. Analytical Chemistry, 2011, 83, 1732-1736.	3.2	190
41	21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. Journal of the American Society for Mass Spectrometry, 2015, 26, 1626-1632.	1.2	188
42	Application of micro-electrospray liquid chromatography techniques to FT-ICR MS to enable high-sensitivity biological analysis. Journal of the American Society for Mass Spectrometry, 1998, 9, 333-340.	1.2	187
43	High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla. Analytical Chemistry, 2008, 80, 3985-3990.	3.2	186
44	Identification of Vanadyl Porphyrins in a Heavy Crude Oil and Raw Asphaltene by Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. Energy & Energ	2.5	185
45	Sulfur Speciation in Petroleum:  Atmospheric Pressure Photoionization or Chemical Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Ene	2.5	176
46	Comparison and interconversion of the two most common frequency-to-mass calibration functions for Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry, 2000, 195-196, 591-598.	0.7	175
47	Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energ	2.5	175
48	Petroleomics: advanced molecular probe for petroleum heavy ends. Journal of Mass Spectrometry, 2011, 46, 337-343.	0.7	172
49	Fourier transform ion cyclotron resonance detection: principles and experimental configurations. International Journal of Mass Spectrometry, 2002, 215, 59-75.	0.7	171
50	Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Organic Geochemistry, 2004, 35, 863-880.	0.9	169
51	Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed. Energy &	2.5	166
52	Petroleum Crude Oil Characterization by IMS-MS and FTICR MS. Analytical Chemistry, 2009, 81, 9941-9947.	3.2	164
53	Relaxation and spectral line shape in Fourier transform ion resonance spectroscopy. Journal of Chemical Physics, 1979, 71, 4434-4444.	1.2	162
54	Heavy Petroleum Composition. 3. Asphaltene Aggregation. Energy & E	2.5	162

#	Article	IF	CITATIONS
55	Contrasting Perspective on Asphaltene Molecular Weight. This Comment vs the Overview of A. A. Herod, K. D. Bartle, and R. Kandiyoti. Energy & Energy & 2008, 22, 1765-1773.	2.5	159
56	Theory of Fourier transform ion cyclotron resonance mass spectroscopy. I. Fundamental equations and lowâ€pressure line shape. Journal of Chemical Physics, 1976, 64, 110-119.	1.2	158
57	Theory of Fourier transform ion cyclotron resonance mass spectroscopy: Response to frequencyâ€sweep excitation. Journal of Chemical Physics, 1980, 73, 1581-1590.	1.2	158
58	Observation of the doubly charged, gas-phase fullerene anions C602- and C702 Journal of the American Chemical Society, 1991, 113, 6795-6798.	6.6	157
59	Closed network growth of fullerenes. Nature Communications, 2012, 3, 855.	5.8	157
60	Automated Broadband Phase Correction of Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry, 2010, 82, 8807-8812.	3.2	153
61	Chemical Sniffing Instrumentation for Security Applications. Chemical Reviews, 2016, 116, 8146-8172.	23.0	151
62	Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. Journal of the American Society for Mass Spectrometry, 2002, 13, 1304-1312.	1.2	150
63	Mass Spectral Analysis of Asphaltenes. II. Detailed Compositional Comparison of Asphaltenes Deposit to Its Crude Oil Counterpart for Two Geographically Different Crude Oils by ESI FT-ICR MS. Energy & E	2.5	147
64	Heavy Petroleum Composition. 4. Asphaltene Compositional Space. Energy & En	2.5	147
65	Characterization of amino acid side chain losses in electron capture dissociation. Journal of the American Society for Mass Spectrometry, 2002, 13, 241-249.	1.2	146
66	Truly "exact―mass: Elemental composition can be determined uniquely from molecular mass measurement at â^¼0.1mDa accuracy for molecules up to â^¼500Da. International Journal of Mass Spectrometry, 2006, 251, 260-265.	0.7	146
67	Quadrupolar excitation and collisional cooling for axialization and high pressure trapping of ions in Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1992, 120, 71-83.	1.9	144
68	Expansion of the Analytical Window for Oil Spill Characterization by Ultrahigh Resolution Mass Spectrometry: Beyond Gas Chromatography. Environmental Science & Echnology, 2013, 47, 7530-7539.	4.6	144
69	Advantages of High Magnetic Field for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1996, 10, 1819-1823.	0.7	141
70	Heavy Petroleum Composition. 1. Exhaustive Compositional Analysis of Athabasca Bitumen HVGO Distillates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Definitive Test of the Boduszynski Model. Energy & Definitive Test of the Boduszynski Model.	2.5	138
71	Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy. Marine Chemistry, 2007, 105, 15-29.	0.9	134
72	Fourier transform ion cyclotron resonance mass spectrometry: technique developments. International Journal of Mass Spectrometry and Ion Processes, 1992, 118-119, 37-70.	1.9	133

#	Article	IF	CITATIONS
73	Mass Spectral Analysis of Asphaltenes. I. Compositional Differences between Pressure-Drop and Solvent-Drop Asphaltenes Determined by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Sump; Fuels, 2006, 20, 1965-1972.	2.5	133
74	Resolution and Chemical Formula Identification of Aromatic Hydrocarbons and Aromatic Compounds Containing Sulfur, Nitrogen, or Oxygen in Petroleum Distillates and Refinery Streams. Analytical Chemistry, 1996, 68, 46-71.	3.2	132
75	Structural Switch of Lysyl-tRNA Synthetase between Translation and Transcription. Molecular Cell, 2013, 49, 30-42.	4.5	131
76	Targeted Petroleomics: Analytical Investigation of Macondo Well Oil Oxidation Products from Pensacola Beach. Energy & En	2.5	130
77	Use of Saturates/Aromatics/Resins/Asphaltenes (SARA) Fractionation To Determine Matrix Effects in Crude Oil Analysis by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Dels, 2006, 20, 668-672.	2.5	129
78	Gas-phase bovine ubiquitin cation conformations resolved by gas-phase hydrogen/deuterium exchange rate and extent. International Journal of Mass Spectrometry, 1999, 185-187, 565-575.	0.7	126
79	Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Journal of Biological Chemistry, 2005, 280, 19136-19145.	1.6	125
80	Photodissociation of Gas-Phase Polycylic Aromatic Hydrocarbon Cations. Journal of Physical Chemistry A, 1998, 102, 3498-3504.	1.1	123
81	Stepwise Structural Characterization of Asphaltenes during Deep Hydroconversion Processes Determined by Atmospheric Pressure Photoionization (APPI) Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. Energy & Energy & 2010, 24, 2257-2265.	2.5	121
82	Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry. International Journal of Mass Spectrometry, 2011, 300, 149-157.	0.7	120
83	Shrink-wrapping an ion cloud for high-performance Fourier transform ion cyclotron resonance mass spectrometry. Chemical Reviews, 1994, 94, 2161-2182.	23.0	118
84	Identification of Water-Soluble Heavy Crude Oil Organic-Acids, Bases, and Neutrals by Electrospray Ionization and Field Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environmental Science & Eamp; Technology, 2007, 41, 2696-2702.	4.6	118
85	Identification of Intact Proteins in Mixtures by Alternated Capillary Liquid Chromatography Electrospray Ionization and LC ESI Infrared Multiphoton Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 1999, 71, 4397-4402.	3.2	115
86	lon traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations. International Journal of Mass Spectrometry and Ion Processes, 1995, 146-147, 261-296.	1.9	114
87	Speciation of nitrogen containing aromatics by atmospheric pressure photoionization or electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 1265-1273.	1.2	113
88	Top-Down Structural Analysis of an Intact Monoclonal Antibody by Electron Capture Dissociation-Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry. Analytical Chemistry, 2013, 85, 4239-4246.	3.2	113
89	Epitope Mapping of a 95 kDa Antigen in Complex with Antibody by Solution-Phase Amide Backbone Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2011, 83, 7129-7136.	3.2	112
90	Protein Molecular Mass to 1 Da by13C,15N Double-Depletion and FT-ICR Mass Spectrometry. Journal of the American Chemical Society, 1997, 119, 433-434.	6.6	111

#	Article	lF	CITATIONS
91	A "screened" electrostatic ion trap for enhanced mass resolution, mass accuracy, reproducibility, and upper mass limit in Fourier-transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 1989, 61, 1288-1293.	3.2	110
92	Compositional Characterization of Bitumen/Water Emulsion Films by Negative- and Positive-Ion Electrospray Ionization and Field Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy &	2.5	109
93	Construction of a hybrid quadrupole/fourier transform ion cyclotron resonance mass spectrometer for versatile MS/MS above 10 kDa. Journal of the American Society for Mass Spectrometry, 2004, 15, 1099-1108.	1.2	107
94	Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Organic Geochemistry, 2013, 65, 19-28.	0.9	107
95	Peer Reviewed: Scaling MS Plateaus with High-Resolution FT-ICRMS. Analytical Chemistry, 2002, 74, 252 A-259 A.	3.2	106
96	Characterization of Vegetable Oils:Â Detailed Compositional Fingerprints Derived from Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2004, 52, 5322-5328.	2.4	106
97	Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FT-ICR Mass Spectrometry. Energy & Energy & 2010, 24, 2939-2946.	2.5	106
98	Petroleomics: Advanced Characterization of Petroleum-Derived Materials by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS)., 2007,, 63-93.		105
99	Resolution of 10 000 Compositionally Distinct Components in Polar Coal Extracts by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & Fuels, 2003, 17, 946-953.	2.5	104
100	Atmospheric pressure photoionization proton transfer for complex organic mixtures investigated by fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 1682-1689.	1,2	104
101	Comprehensive characterization of marine dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry with electrospray and atmospheric pressure photoionization. Rapid Communications in Mass Spectrometry, 2010, 24, 643-650.	0.7	104
102	Compositional Boundaries for Fossil Hydrocarbons. Energy & Energy & 2011, 25, 2174-2178.	2.5	103
103	Electrically Compensated Fourier Transform Ion Cyclotron Resonance Cell for Complex Mixture Mass Analysis. Analytical Chemistry, 2011, 83, 6907-6910.	3.2	103
104	Baseline Mass Resolution of Peptide Isobars:Â A Record for Molecular Mass Resolution. Analytical Chemistry, 2001, 73, 647-650.	3.2	102
105	Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. Journal of Physical Chemistry C, 2014, 118, 10519-10529.	1.5	101
106	Selective-phase Ion Cyclotron Resonance Spectroscopy. Canadian Journal of Chemistry, 1974, 52, 1997-1999.	0.6	98
107	Experimental determination of the number of trapped ions, detection limit, and dynamic range in Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 1993, 65, 135-140.	3.2	97
108	Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nature Communications, 2012, 3, 681.	5.8	96

#	Article	IF	Citations
109	Excitation modes for fourier transform-ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 1993, 4, 433-452.	1.2	95
110	Molecular characterization of petroporphyrins in crude oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Canadian Journal of Chemistry, 2001, 79, 546-551.	0.6	95
111	Characterization of Pine Pellet and Peanut Hull Pyrolysis Bio-oils by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy	2.5	93
112	Combined Top-Down and Bottom-Up Mass Spectrometric Approach to Characterization of Biomarkers for Renal Disease. Analytical Chemistry, 2005, 77, 7163-7171.	3.2	91
113	A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. Journal of the American Society for Mass Spectrometry, 2009, 20, 2183-2191.	1.2	91
114	Comprehensive theory of the Fourier transform ion cyclotron resonance signal for all ion trap geometries. Journal of Chemical Physics, 1991, 94, 5341-5352.	1.2	89
115	Unprecedented Ultrahigh Resolution FT-ICR Mass Spectrometry and Parts-Per-Billion Mass Accuracy Enable Direct Characterization of Nickel and Vanadyl Porphyrins in Petroleum from Natural Seeps. Energy & Damp; Fuels, 2014, 28, 2454-2464.	2.5	88
116	Resolution, Elemental Composition, and Simultaneous Monitoring by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Organosulfur Species before and after Diesel Fuel Processing. Analytical Chemistry, 1998, 70, 4743-4750.	3.2	87
117	Efficient Key Generation by Exploiting Randomness From Channel Responses of Individual OFDM Subcarriers. IEEE Transactions on Communications, 2016, 64, 2578-2588.	4.9	87
118	Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Analytical and Bioanalytical Chemistry, 2007, 389, 1397-1407.	1.9	85
119	Characterization of Athabasca Bitumen Heavy Vacuum Gas Oil Distillation Cuts by Negative/Positive Electrospray Ionization and Automated Liquid Injection Field Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2008, 22, 3118-3125.	2.5	85
120	Theory of ion cyclotron resonance mass spectrometry: resonant excitation and radial ejection in orthorhombic and cylindrical ion traps. International Journal of Mass Spectrometry and Ion Processes, 1990, 100, 347-379.	1.9	84
121	The Early Development of Fourier Transform Ion Cyclotron Resonance (FT-ICR) Spectroscopy. Journal of Mass Spectrometry, 1996, 31, 581-585.	0.7	84
122	High-Resolution Field Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Analysis of Nonpolar Molecules. Analytical Chemistry, 2003, 75, 2172-2176.	3.2	84
123	Enhanced Digestion Efficiency, Peptide Ionization Efficiency, and Sequence Resolution for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2008, 80, 9034-9041.	3.2	84
124	Characterization of Compositional Changes in Vacuum Gas Oil Distillation Cuts by Electrospray lonization Fourier Transformâ-'lon Cyclotron Resonance (FTâ-'ICR) Mass Spectrometry. Energy & Energy & Fuels, 2006, 20, 1664-1673.	2.5	82
125	Structural Characterization and Interfacial Behavior of Acidic Compounds Extracted from a North Sea Oil. Energy & Sea Oi	2.5	82
126	Secondary fragmentation of linear peptides in electron capture dissociation. International Journal of Mass Spectrometry, 2003, 228, 723-728.	0.7	81

#	Article	IF	CITATIONS
127	Characterization of Acidic Species in Athabasca Bitumen and Bitumen Heavy Vacuum Gas Oil by Negative-Ion ESI FTâ^ICR MS with and without Acidâ^Ion Exchange Resin Prefractionation. Energy & Euels, 2008, 22, 2372-2378.	2.5	81
128	Stored waveform inverse Fourier transform axial excitation/ejection for quadrupole ion trap mass spectrometry. Analytical Chemistry, 1993, 65, 1288-1294.	3.2	79
129	Protein kinase A phosphorylation characterized by tandem Fourier transform ion cyclotron resonance mass spectrometry. Proteomics, 2004, 4, 970-981.	1.3	79
130	Solid-Phase Extraction Fractionation To Extend the Characterization of Naphthenic Acids in Crude Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Ene	2.5	79
131	Detailed Elemental Compositions of Emulsion Interfacial Material versus Parent Oil for Nine Geographically Distinct Light, Medium, and Heavy Crude Oils, Detected by Negative- and Positive-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Samp; Fuels. 2007. 21. 973-981.	2.5	78
132	Chemical Speciation of Calcium and Sodium Naphthenate Deposits by Electrospray Ionization FT-ICR Mass Spectrometry. Energy & Samp; Fuels, 2009, 23, 349-355.	2.5	78
133	Stored waveform simultaneous mass-selective ejection/excitation for Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1987, 79, 115-125.	1.9	77
134	Mass Spectrometry:Â Recent Advances and Future Directions. The Journal of Physical Chemistry, 1996, 100, 12897-12910.	2.9	77
135	Enhancement of the effective resolution of mass spectra of high-mass biomolecules by maximum entropy-based deconvolution to eliminate the isotopic natural abundance distribution. Journal of the American Society for Mass Spectrometry, 1997, 8, 659-670.	1.2	77
136	Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry. Energy & Energy & 2006, 20, 1235-1241.	2.5	77
137	Human recombinant [C22A] FK506â€binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Protein Science, 1997, 6, 2203-2217.	3.1	77
138	Electron capture dissociation and infrared multiphoton dissociation of oligodeoxynucleotide dications. Journal of the American Society for Mass Spectrometry, 2003, 14, 23-41.	1.2	76
139	Theoretical and Experimental Prospects for Protein Identification Based Solely on Accurate Mass Measurement. Journal of Proteome Research, 2004, 3, 61-67.	1.8	76
140	Ion cyclotron resonance excitatio/de-excitation: A basis for Stochastic fourier transform ion cyclotron mass spectrometry. Chemical Physics Letters, 1984, 105, 233-236.	1,2	75
141	Crude Oil Polar Chemical Composition Derived from FTâ^'ICR Mass Spectrometry Accounts for Asphaltene Inhibitor Specificity. Energy & Samp; Fuels, 2008, 22, 3112-3117.	2.5	75
142	High-Sensitivity Electron Capture Dissociation Tandem FTICR Mass Spectrometry of Microelectrosprayed Peptides. Analytical Chemistry, 2001, 73, 3605-3610.	3.2	73
143	Instrumentation and Method for Ultrahigh Resolution Field Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Nonpolar Species. Analytical Chemistry, 2005, 77, 1317-1324.	3.2	73
144	Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry. Fuel, 2006, 85, 2071-2080.	3.4	72

#	Article	IF	CITATIONS
145	Compositional Space Boundaries for Organic Compounds. Analytical Chemistry, 2012, 84, 3410-3416.	3.2	72
146	ESI FT-ICR mass spectral analysis of coal liquefaction products. Fuel, 2005, 84, 1790-1797.	3.4	69
147	Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. Nature Communications, 2014, 5, 5844.	5.8	69
148	Design of an OFDM Physical Layer Encryption Scheme. IEEE Transactions on Vehicular Technology, 2017, 66, 2114-2127.	3.9	69
149	Speciation of Aromatic Compounds in Petroleum Refinery Streams by Continuous Flow Field Desorption Ionization FT-ICR Mass Spectrometry. Energy & Energy & 2005, 19, 1566-1573.	2.5	68
150	Effect of signal-to-noise ratio and number of data points upon precision in measurement of peak amplitude, position and width in fourier transform spectrometry. Chemometrics and Intelligent Laboratory Systems, 1986, 1, 51-58.	1.8	67
151	Compositional Determination of Acidic Species in Illinois No. 6 Coal Extracts by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy &	2.5	67
152	Fast reversed-phase liquid chromatography to reduce back exchange and increase throughput in H/D exchange monitored by FT-ICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009, 20, 520-524.	1.2	67
153	Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1783-1802.	1.2	67
154	Elimination of z-ejection in Fourier-transform ion cyclotron resonance mass spectrometry by radio/frequency electric field shimming. Analytical Chemistry, 1990, 62, 515-520.	3.2	66
155	Assigning product ions from complex MS/MS spectra: The importance of mass uncertainty and resolving power. Journal of the American Society for Mass Spectrometry, 2005, 16, 183-198.	1.2	66
156	Combining biomarker and bulk compositional gradient analysis to assess reservoir connectivity. Organic Geochemistry, 2010, 41, 812-821.	0.9	66
157	Equilibrium space charge distribution in a quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 1994, 5, 64-71.	1.2	65
158	Fourier transform ion cyclotron resonance mass spectrometry., 1990,, 225-278.		64
159	Ion Activation in Electron Capture Dissociation To Distinguish between N-Terminal and C-Terminal Product Ions. Analytical Chemistry, 2007, 79, 7596-7602.	3.2	64
160	Advances in Asphaltene Petroleomics. Part 4. Compositional Trends of Solubility Subfractions Reveal that Polyfunctional Oxygen-Containing Compounds Drive Asphaltene Chemistry. Energy & Energy	2.5	64
161	General theory of excitation in ion cyclotron resonance mass spectrometry. Analytical Chemistry, 1991, 63, 2057-2061.	3.2	63
162	Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. Journal of the American Society for Mass Spectrometry, 2005, 16, 752-762.	1.2	61

#	Article	IF	CITATIONS
163	Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12307-12312.	3.3	61
164	Dispersion versus absorption: spectral line shape analysis for radiofrequency and microwave spectrometry. Analytical Chemistry, 1978, 50, 756-763.	3.2	60
165	Theoretical signal-to-noise ratio and mass resolution in Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 1979, 51, 1710-1714.	3.2	59
166	Broadband Phase Correction of FT-ICR Mass Spectra via Simultaneous Excitation and Detection. Analytical Chemistry, 2004, 76, 5756-5761.	3.2	59
167	Naphthenic acids as indicators of crude oil biodegradation in soil, based on semiâ€quantitative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 3968-3976.	0.7	59
168	Effect of Thermal Treatment on Acidic Organic Species from Athabasca Bitumen Heavy Vacuum Gas Oil, Analyzed by Negative-Ion Electrospray Fourier Transform Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry. Energy & Spectrometry.	2.5	58
169	Unit Mass Baseline Resolution for an Intact 148 kDa Therapeutic Monoclonal Antibody by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2011, 83, 8391-8395.	3.2	58
170	Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview. Entropy, 2017, 19, 420.	1.1	58
171	High-field fourier transform ion cyclotron resonance mass spectrometry for simultaneous trapping and gas-phase hydrogen/deuterium exchange of peptide ions. Journal of the American Society for Mass Spectrometry, 1998, 9, 1012-1019.	1.2	57
172	Unequivocal determination of metal atom oxidation state in naked heme proteins: Fe(III)myoglobin, Fe(III)cytochrome c, Fe(III)cytochrome b5, and Fe(III)cytochrome b5 L47R. Journal of the American Society for Mass Spectrometry, 2000, 11, 120-126.	1.2	57
173	Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nature Structural and Molecular Biology, 2005, 12, 460-466.	3.6	57
174	Automated data reduction for hydrogen/deuterium exchange experiments, enabled by high-resolution fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 550-558.	1.2	57
175	Nonpolar Compositional Analysis of Vacuum Gas Oil Distillation Fractions by Electron Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy &	2.5	56
176	Self-Association of Organic Acids in Petroleum and Canadian Bitumen Characterized by Low- and High-Resolution Mass Spectrometryâ€. Energy & Samp; Fuels, 2007, 21, 1309-1316.	2.5	56
177	The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis. Rapid Communications in Mass Spectrometry, 2010, 24, 784-790.	0.7	56
178	126 264 Assigned Chemical Formulas from an Atmospheric Pressure Photoionization 9.4 T Fourier Transform Positive Ion Cyclotron Resonance Mass Spectrum. Analytical Chemistry, 2017, 89, 11318-11324.	3.2	55
179	Laboratory-frame and rotating-frame ion trajectories in ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1990, 100, 323-346.	1.9	54
180	Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry/mass spectrometry with stored-waveform ion radius modulation. Journal of the American Chemical Society, 1993, 115, 7854-7861.	6.6	52

#	Article	IF	CITATIONS
181	Channel-Envelope Differencing Eliminates Secret Key Correlation: LoRa-Based Key Generation in Low Power Wide Area Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 12462-12466.	3.9	52
182	Simple and accurate determination of ion translational energy in ion cyclotron resonance mass spectroscopy. Journal of the American Chemical Society, 1990, 112, 1275-1277.	6.6	51
183	Ultrahigh-resolution matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectra of peptides. Journal of Mass Spectrometry, 1995, 30, 825-833.	0.7	51
184	Oil Spill Source Identification by Principal Component Analysis of Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry, 2013, 85, 9064-9069.	3.2	51
185	Isomeric Separation and Structural Characterization of Acids in Petroleum by Ion Mobility Mass Spectrometry. Energy & Diels, 2015, 29, 3626-3633.	2.5	50
186	40 years of Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry, 2015, 377, 410-420.	0.7	49
187	Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS. Journal of the American Society for Mass Spectrometry, 2017, 28, 827-838.	1.2	49
188	Combating selective ionization in the high resolution mass spectral characterization of complex mixtures. Faraday Discussions, 2019, 218, 29-51.	1.6	49
189	Gas-phase hydrogen/deuterium exchange of positively charged mononucleotides by use of Fourier-transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2001, 12, 268-277.	1.2	48
190	Analysis and elimination of systematic errors originating from coulomb mutual interaction and image charge in Fourier transform ion cyclotron resonance precise mass difference measurements. Journal of the American Society for Mass Spectrometry, 1993, 4, 855-868.	1.2	47
191	Mapping of protein:protein contact surfaces by hydrogen/deuterium exchange, followed by on-line high-performance liquid chromatography–electrospray ionization fourier-transform ion-cyclotron-resonance mass analysis. Journal of Chromatography A, 2002, 982, 85-95.	1.8	46
192	De Novo Sequencing and Disulfide Mapping of a Bromotryptophan-Containing Conotoxin by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2006, 78, 8082-8088.	3.2	46
193	Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for the Analysis of Complex Mixtures. Analytical Chemistry, 2011, 83, 1616-1623.	3.2	45
194	Algae Polar Lipids Characterized by Online Liquid Chromatography Coupled with Hybrid Linear Quadrupole Ion Trap/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Sump; Fuels, 2011, 25, 4770-4775.	2.5	45
195	Atmospheric Pressure Laser-Induced Acoustic Desorption Chemical Ionization Mass Spectrometry for Analysis of Saturated Hydrocarbons. Analytical Chemistry, 2012, 84, 7131-7137.	3.2	45
196	Fourier Transform Ion Cyclotron Resonance Mass Resolution and Dynamic Range Limits Calculated by Computer Modeling of Ion Cloud Motion. Journal of the American Society for Mass Spectrometry, 2012, 23, 375-384.	1.2	45
197	Liquid Chromatographyâ'Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Characterization of Protein Kinase C Phosphorylation. Journal of Proteome Research, 2003, 2, 373-382.	1.8	44
198	Periodic sequence distribution of product ion abundances in electron capture dissociation of amphipathic peptides and proteins. Journal of the American Society for Mass Spectrometry, 2009, 20, 1182-1192.	1.2	44

#	Article	IF	CITATIONS
199	Analysis and Identification of Biomarkers and Origin of Color in a Bright Blue Crude Oil. Energy & Energy & Fuels, 2011, 25, 172-182.	2.5	44
200	Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 2371-2383.	1.2	44
201	Bloch equations applied to ion cyclotron resonance spectroscopy: Broadband interconversion between magnetron and cyclotron motion for ion axialization. Journal of Chemical Physics, 1993, 98, 4486-4493.	1.2	43
202	Silver Cationization for Rapid Speciation of Sulfur-Containing Species in Crude Oils by Positive Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & Fuels, 2014, 28, 447-452.	2.5	43
203	Positive Ion Electrospray Ionization Suppression in Petroleum and Complex Mixtures. Energy & Energy & Fuels, 2018, 32, 2901-2907.	2.5	43
204	Molecular-Level Characterization of Oil-Soluble Ketone/Aldehyde Photo-Oxidation Products by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Similarity Between Microcosm and Field Samples. Environmental Science & Environmental	4.6	43
205	Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis. Journal of the American Society for Mass Spectrometry, 2009, 20, 263-268.	1.2	42
206	Effects of Noise, Time-Domain Damping, Zero-Filling and the FFT Algorithm on the "Exact― Interpolation of Fast Fourier Transform Spectra. Applied Spectroscopy, 1988, 42, 715-721.	1.2	41
207	Identification, Composition, and Asymmetric Formation Mechanism of Glycidyl Methacrylate/Butyl Methacrylate Copolymers up to 7000 Da from Electrospray Ionization Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 1998, 70, 3220-3226.	3.2	41
208	Gas phase activation energy for unimolecular dissociation of biomolecular ions determined by Focused RAdiation for Gaseous Multiphoton ENergy Transfer (FRAGMENT)., 1999, 13, 1639-1642.		40
209	Mapping of the Allosteric Network in the Regulation of α-Isopropylmalate Synthase from <i>Mycobacterium tuberculosis</i> by the Feedback Inhibitor <scp>I</scp> -Leucine: Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry. Biochemistry, 2009, 48, 7457-7464.	1.2	40
210	Advanced Chemical Characterization of Pyrolysis Oils from Landfill Waste, Recycled Plastics, and Forestry Residue. Energy & Energy & Samp; Fuels, 2017, 31, 8210-8216.	2.5	40
211	Wide-mass-range axialization for high-resolution Fourier-transform ion cyclotron resonance mass spectrometry of externally generated ions. Rapid Communications in Mass Spectrometry, 1994, 8, 615-620.	0.7	39
212	Mass Resolution and Mass Accuracy: How Much Is Enough?. Mass Spectrometry, 2013, 2, S0009-S0009.	0.2	39
213	Can Fourier transform mass spectral resolution be improved by detection at harmonic multiples of the fundamental ion cyclotron orbital frequency?. International Journal of Mass Spectrometry and Ion Processes, 1991, 107, 49-81.	1.9	38
214	Dyanmic ion trapping for Fourier-transform ion cyclotron resonance mass spectrometry: Simultaneous positive- and negative-ion detection. Rapid Communications in Mass Spectrometry, 1992, 6, 166-172.	0.7	38
215	Comparative Compositional Analysis of Untreated and Hydrotreated Oil by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy &	2.5	38
216	Baseline correction of absorption-mode Fourier transform ion cyclotron resonance mass spectra. International Journal of Mass Spectrometry, 2012, 325-327, 67-72.	0.7	38

#	Article	IF	Citations
217	Nano-LC FTICR Tandem Mass Spectrometry for Top-Down Proteomics: Routine Baseline Unit Mass Resolution of Whole Cell Lysate Proteins up to 72 kDa. Analytical Chemistry, 2012, 84, 2111-2117.	3.2	38
218	Tailored Ion Radius Distribution for Increased Dynamic Range in FT-ICR Mass Analysis of Complex Mixtures. Analytical Chemistry, 2013, 85, 265-272.	3.2	38
219	Oil Reservoir Characterization via Crude Oil Analysis by Downhole Fluid Analysis in Oil Wells with Visibleâ^'Near-Infrared Spectroscopy and by Laboratory Analysis with Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Doc 2006, 20, 2448-2456.	2.5	37
220	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Analysis of Metal-Ion Selected Dynamic Protein Libraries. Journal of the American Chemical Society, 2003, 125, 5331-5339.	6.6	36
221	Letter: The Diagnostic Value of Amino Acid Side-Chain Losses in Electron Capture Dissociation of Polypeptides. Comment on: "Can the (M.â^'X) Region in Electron Capture Dissociation Provide Reliable Information on Amino Acid Composition of Polypeptides?â€, Eur. J. Mass Spectrom. 8, 461–469 (2002). European Journal of Mass Spectrometry. 2003. 9, 221-222.	0.5	36
222	Structural characterization of an unusually stable cyclic peptide, kalata B2 from Oldenlandia affinis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1568-1576.	1.1	36
223	Heat-Exchanger Deposits in an Inverted Steam-Assisted Gravity Drainage Operation. Part 2. Organic Acid Analysis by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & E	2.5	36
224	Functional Isomers in Petroleum Emulsion Interfacial Material Revealed by Ion Mobility Mass Spectrometry and Collision-Induced Dissociation. Energy & Energy & 2017, 31, 311-318.	2.5	36
225	Coulomb broadening in Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1986, 68, 287-301.	1.9	35
226	Dispersion versus absorption (DISPA) method for automatic phasing of fourier transform ion cyclotron resonance mass spectra. Rapid Communications in Mass Spectrometry, 1987, 1, 33-37.	0.7	35
227	Effect of ion-neutral collision mechanism on the trapped-ion equation of motion: a new mass spectral line shape for high-mass trapped ions. International Journal of Mass Spectrometry and Ion Processes, 1997, 167-168, 185-193.	1.9	35
228	Structural validation of saccharomicins by high resolution and high mass accuracy fourier transform-ion cyclotron resonance-mass spectrometry and infrared multiphoton dissociation tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 1999, 10, 1285-1290.	1.2	35
229	Stable isotope incorporation triples the upper mass limit for determination of elemental composition by accurate mass measurement. Journal of the American Society for Mass Spectrometry, 2000, 11, 835-840.	1.2	35
230	Ion Cyclotron Resonance and Nuclear Magnetic Resonance Spectroscopies:  Magnetic Partners for Elucidation of Molecular Structure and Reactivity. Accounts of Chemical Research, 1996, 29, 307-316.	7.6	34
231	Direct optical spectroscopy of gas-phase molecular ions trapped and mass-selected by ion cyclotron resonance: laser-induced fluorescence excitation spectrum of hexafluorobenzene (C6F6+). Chemical Physics Letters, 2001, 334, 69-75.	1.2	34
232	Structural Analysis of 2D-Gel-Separated Glycoproteins from Human Cerebrospinal Fluid by Tandem High-Resolution Mass Spectrometry. Journal of Proteome Research, 2003, 2, 581-588.	1.8	34
233	Continuous-flow sample introduction for field desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 1641-1644.	0.7	34
234	Trust-Aware Consensus-Inspired Distributed Cooperative Spectrum Sensing for Cognitive Radio Ad Hoc Networks. IEEE Transactions on Cognitive Communications and Networking, 2016, 2, 24-37.	4.9	34

#	Article	IF	CITATIONS
235	Comprehensive Compositional and Structural Comparison of Coal and Petroleum Asphaltenes Based on Extrography Fractionation Coupled with Fourier Transform Ion Cyclotron Resonance MS and MS/MS Analysis. Energy & Dels, 2020, 34, 1492-1505.	2.5	34
236	Experimental evaluation of a hyperbolic ion trap for fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 1992, 3, 188-197.	1.2	33
237	Axial and radial ion cloud compression: coupling of magnetron and cyclotron motion to axial motion in a segmented cubic Fourier transform ion cyclotron resonance ion trap. International Journal of Mass Spectrometry and Ion Processes, 1993, 124, 53-67.	1.9	33
238	Stacked-ring electrostatic ion guide. Journal of the American Society for Mass Spectrometry, 1996, 7, 101-106.	1.2	33
239	Impact of ion magnetron motion on electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry, 2006, 255-256, 144-149.	0.7	33
240	Electron capture dissociation implementation progress in fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2008, 19, 762-771.	1.2	33
241	Structural context for mobilization of a human tRNA synthetase from its cytoplasmic complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8239-8244.	3.3	33
242	Improved Sequence Resolution by Global Analysis of Overlapped Peptides in Hydrogen/Deuterium Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2012, 23, 1202-1208.	1.2	33
243	Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis. Journal of the American Society for Mass Spectrometry, 2017, 28, 1787-1795.	1.2	33
244	Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C. Journal of the American Society for Mass Spectrometry, 1999, 10, 703-710.	1.2	32
245	Charge location directs electron capture dissociation of peptide dications. Journal of the American Society for Mass Spectrometry, 2006, 17, 1704-1711.	1.2	32
246	Convolution Fourier transform ion cyclotron resonance spectroscopy. Chemical Physics Letters, 1979, 63, 515-518.	1.2	31
247	Interaction of packaging motor with the polymerase complex of dsRNA bacteriophage. Virology, 2006, 351, 73-79.	1.1	31
248	Selective Ionization of Dissolved Organic Nitrogen by Positive Ion Atmospheric Pressure Photoionization Coupled with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2012, 84, 5085-5090.	3.2	31
249	DART Fourier transform ion cyclotron resonance mass spectrometry for analysis of complex organic mixtures. International Journal of Mass Spectrometry, 2015, 378, 186-192.	0.7	31
250	Middleâ€Down Characterization of the Cell Cycle Dependence of Histone H4 Posttranslational Modifications and Proteoforms. Proteomics, 2018, 18, e1700442.	1.3	31
251	Multiply pulsed collision gas for ion axialization in fourier-transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 1993, 7, 857-860.	0.7	30
252	An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer. International Journal of Mass Spectrometry and Ion Processes, 1993, 125, 135-143.	1.9	30

#	Article	IF	CITATIONS
253	Linear excitation and detection in Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1994, 139, 169-189.	1.9	30
254	Complete Compositional Monitoring of the Weathering of Transportation Fuels Based on Elemental Compositions from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environmental Science & Echnology, 2000, 34, 1671-1678.	4.6	30
255	Evaluation and optimization of electron capture dissociation efficiency in fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 1060-1066.	1.2	30
256	Combining Bottom-Up and Top-Down Mass Spectrometric Strategies for De Novo Sequencing of the Crustacean Hyperglycemic Hormone from Cancer borealis. Analytical Chemistry, 2009, 81, 240-247.	3.2	30
257	Diagnosis of Hemoglobinopathy and \hat{l}^2 -Thalassemia by 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry of Hemoglobin from Blood. Clinical Chemistry, 2019, 65, 986-994.	1.5	30
258	Automated Liquid Injection Field Desorption/Ionization for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2008, 80, 7379-7382.	3.2	29
259	Quantitative Mass Spectrometry Reveals that Intact Histone H1 Phosphorylations are Variant Specific and Exhibit Single Molecule Hierarchical Dependence. Molecular and Cellular Proteomics, 2016, 15, 818-833.	2.5	29
260	Time-Domain (Interferogram) and Frequency-Domain (Absorption-Mode and Magnitude-Mode) Noise and Precision in Fourier Transform Spectrometry. Applied Spectroscopy, 1990, 44, 766-775.	1.2	28
261	Time resolved laser-induced fluorescence of electrosprayed ions confined in a linear quadrupole trap. Review of Scientific Instruments, 2004, 75, 4511-4515.	0.6	28
262	Conformational States of Human Purine Nucleoside Phosphorylase at Rest, at Work, and with Transition State Analogues. Biochemistry, 2010, 49, 2058-2067.	1.2	28
263	Laserspray and Matrix-Assisted Ionization Inlet Coupled to High-Field FT-ICR Mass Spectrometry for Peptide and Protein Analysis. Journal of the American Society for Mass Spectrometry, 2013, 24, 320-328.	1.2	28
264	Masses of stable neon isotopes determined at parts per billion precision by Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1993, 128, 47-60.	1.9	27
265	Charge reduction lowers mass resolving power for isotopically resolved electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Rapid Communications in Mass Spectrometry, 2001, 15, 232-235.	0.7	27
266	Electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry of cyclodepsipeptides, branched peptides, and \hat{l}_{μ} -peptides. International Journal of Mass Spectrometry, 2004, 234, 23-35.	0.7	27
267	Microchip Atmospheric Pressure Photoionization for Analysis of Petroleum by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2009, 81, 2799-2803.	3.2	27
268	Tetramethylammonium Hydroxide as a Reagent for Complex Mixture Analysis by Negative Ion Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2013, 85, 7803-7808.	3.2	27
269	Label-Free Relative Quantitation of Isobaric and Isomeric Human Histone H2A and H2B Variants by Fourier Transform Ion Cyclotron Resonance Top-Down MS/MS. Journal of Proteome Research, 2016, 15, 3196-3203.	1.8	27
270	Characterization of the Capsid Protein Glycosylation of Adeno-Associated Virus Type 2 by High-Resolution Mass Spectrometry. Journal of Virology, 2006, 80, 6171-6176.	1.5	26

#	Article	IF	CITATIONS
271	Drug binding and resistance mechanism of KIT tyrosine kinase revealed by hydrogen/deuterium exchange FTICR mass spectrometry. Protein Science, 2010, 19, 703-715.	3.1	26
272	Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Scientific Reports, 2013, 3, 1247.	1.6	26
273	Accurate Identification of Unknown and Known Metabolic Mixture Components by Combining 3D NMR with Fourier Transform Ion Cyclotron Resonance Tandem Mass Spectrometry. Journal of Proteome Research, 2017, 16, 3774-3786.	1.8	26
274	Probing Aggregation Tendencies in Asphaltenes by Gel Permeation Chromatography. Part 2: Online Detection by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Energy & Dels, 2020, 34, 10915-10925.	2.5	26
275	Probing Aggregation Tendencies in Asphaltenes by Gel Permeation Chromatography. Part 1: Online Inductively Coupled Plasma Mass Spectrometry and Offline Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Spectrometry. 2020, 34, 8308-8315.	2.5	26
276	Matrix-shimmed ion cyclotron resonance ion trap simultaneously optimized for excitation, detection, quadrupolar axialization, and trapping. Journal of the American Society for Mass Spectrometry, 1999, 10, 759-769.	1.2	25
277	Noise analysis for 2D tandem Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry, 2001, 210-211, 101-111.	0.7	25
278	Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 1016-1025.	1,2	25
279	Direct Analysis of Thin-Layer Chromatography Separations of Petroleum Samples by Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Imaging. Energy & Samp; Fuels, 2014, 28, 6284-6288.	2.5	25
280	Statistically Significant Differences in Composition of Petroleum Crude Oils Revealed by Volcano Plots Generated from Ultrahigh Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectra. Energy & Spectr	2.5	25
281	Multicomponent Internal Recalibration of an LCâ^'FTICR-MS Analysis Employing a Partially Characterized Complex Peptide Mixture:Â Systematic and Random Errors. Analytical Chemistry, 2005, 77, 7246-7254.	3.2	24
282	Analysis of Petroleum Products by Gel Permeation Chromatography Coupled Online with Inductively Coupled Plasma Mass Spectrometry and Offline with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Ene	2.5	24
283	Parameter Analysis in Macro-Scale Molecular Communications Using Advection-Diffusion. IEEE Access, 2018, 6, 46706-46717.	2.6	24
284	A Chemical Alphabet for Macromolecular Communications. Analytical Chemistry, 2018, 90, 7739-7746.	3.2	24
285	Characterization of an Asphalt Binder and Photoproducts by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Reveals Abundant Water-Soluble Hydrocarbons. Environmental Science & Technology, 2020, 54, 8830-8836.	4.6	24
286	High-resolution multiple-ion simultaneous monitoring by means of multiplefFoldover Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 1988, 60, 341-344.	3.2	22
287	A combined linear ion trap for mass spectrometry. Journal of the American Society for Mass Spectrometry, 1997, 8, 962-969.	1.2	22
288	Lithium Cationization for Petroleum Analysis by Positive Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Energy & 2014, 28, 6841-6847.	2.5	22

#	Article	IF	CITATIONS
289	Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Structure, 2017, 25, 1519-1529.e4.	1.6	22
290	Experimental Results on the Open-Air Transmission of Macro-Molecular Communication Using Membrane Inlet Mass Spectrometry. IEEE Communications Letters, 2018, 22, 2567-2570.	2.5	22
291	SDN-Based SYN Proxyâ€"A Solution to Enhance Performance of Attack Mitigation Under TCP SYN Flood. Computer Journal, 2019, 62, 518-534.	1.5	22
292	Fourier transform ion cyclotron mass spectrometry using pseudo-ramdom-noise excitation. Chemical Physics Letters, 1984, 108, 63-66.	1.2	21
293	Trimeric, Cyclic Dimethyltin-Containing Tungstophosphate [{(Sn(CH3)2)(Sn(CH3)2O)(A-PW9O34)}3]21â^. Journal of Cluster Science, 2007, 18, 173-191.	1.7	21
294	SIMION modeling of ion image charge detection in Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry, 2009, 283, 100-104.	0.7	21
295	Experimental study on channel reciprocity in wireless key generation. , 2016, , .		21
296	Classification of Plasma Cell Disorders by 21 Tesla Fourier Transform Ion Cyclotron Resonance Top-Down and Middle-Down MS/MS Analysis of Monoclonal Immunoglobulin Light Chains in Human Serum. Analytical Chemistry, 2019, 91, 3263-3269.	3.2	21
297	Compositional Analysis for Identification of Arson Accelerants by Electron Ionization Fourier Transform Ion Cyclotron Resonance High-Resolution Mass Spectrometry. Journal of Forensic Sciences, 2001, 46, 268-279.	0.9	21
298	Lessons Learned from a Decade-Long Assessment of Asphaltenes by Ultrahigh-Resolution Mass Spectrometry and Implications for Complex Mixture Analysis. Energy & Spectrometry and Implications for Complex Mixture Analysis.	2.5	21
299	Dispersion vs. absorption (DISPA): A magic circle for spectroscopic line shape analysis. Chemometrics and Intelligent Laboratory Systems, 1988, 3, 261-275.	1.8	20
300	Linear Prediction Cholesky Decomposition vs Fourier Transform Spectral Analysis for Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 1997, 69, 1156-1162.	3.2	20
301	Fourier transform ion cyclotron resonance mass spectrometry in a high homogeneity 25 tesla resistive magnet. Journal of the American Society for Mass Spectrometry, 1999, 10, 265-268.	1.2	20
302	Secure key generation from OFDM subcarriers' channel responses. , 2014, , .		20
303	An effective key generation system using improved channel reciprocity. , 2015, , .		20
304	Linking Natural Oil Seeps from the Gulf of Mexico to Their Origin by Use of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Environmental Science & Environmental	4.6	20
305	Nanostructure of Gasification Charcoal (Biochar). Environmental Science & Envi	4.6	20
306	Role of Molecular Structure in the Production of Water-Soluble Species by Photo-oxidation of Petroleum. Environmental Science & Environmental Science	4.6	20

#	Article	IF	CITATIONS
307	Bayesian versus Fourier spectral analysis of ion cyclotron resonance time-domain signals. Analytical Chemistry, 1990, 62, 201-208.	3.2	19
308	Harmonic enhancement of a detected ion cyclotron resonance signal by use of segmented detection electrodes. International Journal of Mass Spectrometry and Ion Processes, 1993, 123, 41-47.	1.9	19
309	Linearity and quadrupolarity of tetragonal and cylindrical penning traps of arbitrary length-to-width ratio. Journal of the American Society for Mass Spectrometry, 1997, 8, 283-293.	1.2	19
310	Petroleomics: A Test Bed for Ultra-High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. European Journal of Mass Spectrometry, 2010, 16, 367-371.	0.5	19
311	An antibiotic linked to peptides and proteins is released by electron capture dissociation fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2003, 14, 302-310.	1.2	18
312	Epitope mapping of 7S cashew antigen in complex with antibody by solutionâ€phase H/D exchange monitored by FTâ€ICR mass spectrometry. Journal of Mass Spectrometry, 2015, 50, 812-819.	0.7	18
313	DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase. Journal of Biological Chemistry, 2016, 291, 12467-12480.	1.6	18
314	Polar Lipid Composition of Biodiesel Algae Candidates Nannochloropsis oculata and Haematococcus pluvialis from Nano Liquid Chromatography Coupled with Negative Electrospray Ionization 14.5 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Samp; Fuels, 2016, 30, 8270-8276.	2.5	18
315	Anisotropic reorientation and non-exponential nuclear magnetic relaxation. Molecular Physics, 1974, 28, 113-129.	0.8	17
316	Effect of time-domain dynamic range on stored waveform excitation for fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 1987, 1, 39-42.	0.7	17
317	Generation and detection of coherent magnetron motion in Fourier transform ion cyclotron resonance mass spectrometry. Journal of Chemical Physics, 1994, 100, 2258-2266.	1.2	17
318	An External Source 7 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer with Electrostatic Ion Guide. Rapid Communications in Mass Spectrometry, 1996, 10, 1845-1849.	0.7	17
319	Sympathetic cooling of trapped negative ions by self-cooled electrons in a fourier transform ion cyclotron resonance mass spectrometer. Journal of the American Society for Mass Spectrometry, 1997, 8, 793-800.	1.2	17
320	Theoretical Maximal Precision for Mass-to-Charge Ratio, Amplitude, and Width Measurements in Ion-Counting Mass Analyzers. Analytical Chemistry, 2000, 72, 2256-2260.	3.2	17
321	Resolution of Individual Component Fluorescence Lifetimes from a Mixture of Trapped Ions by Laser-Induced Fluorescence/Ion Cyclotron Resonanceâ€. Journal of Physical Chemistry A, 2002, 106, 10033-10036.	1.1	17
322	Identifying bryostatins and potential precursors from the bryozoan Bugula neritina. Natural Product Research, 2005, 19, 467-491.	1.0	17
323	Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation. Molecular and Cellular Proteomics, 2016, 15, 2411-2422.	2.5	17
324	Molecular Characterization of Photochemically Produced Asphaltenes via Photooxidation of Deasphalted Crude Oils. Energy & Energy	2.5	17

#	Article	IF	CITATIONS
325	Pure absorption-mode spectra from Bayesian maximum entropy analysis of ion cyclotron resonance time-domain signals. Analytical Chemistry, 1991, 63, 551-560.	3.2	16
326	A two-electrode ion trap for Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1994, 137, 9-30.	1.9	16
327	Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry. Archives of Biochemistry and Biophysics, 2008, 474, 1-7.	1.4	16
328	Clipped representations of fourier-transform ion-cyclotron resonance mass spectra. Analytica Chimica Acta, 1985, 178, 27-41.	2.6	15
329	Laser-induced Fluorescence of Ba+ Ions Trapped and Mass-selected in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. , 1996, 10, 1850-1854.		15
330	Digital Quadrature Heterodyne Detection for High-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 1999, 71, 4758-4763.	3.2	15
331	Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths. Physical Chemistry Chemical Physics, 2016, 18, 713-717.	1.3	15
332	Design of an Efficient OFDMA-Based Multi-User Key Generation Protocol. IEEE Transactions on Vehicular Technology, 2019, 68, 8842-8852.	3.9	15
333	Circularly polarized quadrature excitation for Fourier-transform ion cyclotron resonance mass spectrometry. Chemical Physics Letters, 1992, 198, 143-148.	1.2	14
334	Two-plate vs. four-plate azimuthal quadrupolar excitation for FT-ICR mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1997, 165-166, 327-338.	1.9	14
335	display= inline overflow= scroll xmlns:xocs= http://www.elsevier.com/xml/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.w3.org/1998/Math/MathML"	1.2	14
336	Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+) and Negative (ER-) Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry. Journal of Cancer, 2012, 3, 269-284.	1.2	14
337	The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly. Journal of Biological Chemistry, 2015, 290, 19319-19333.	1.6	14
338	Competitive binding to the oligopeptide binding protein, OppA: In-trap cleanup in an fourier transform ion cyclotron resonance mass spectrometer. Journal of the American Society for Mass Spectrometry, 2000, 11, 1023-1026.	1.2	13
339	Excitation of Radial Ion Motion in an rf-Only Multipole Ion Guide Immersed in a Strong Magnetic Field Gradient. Journal of the American Society for Mass Spectrometry, 2011, 22, 591-601.	1.2	13
340	Compositional and Structural Analysis of Silica Gel Fractions from Municipal Waste Pyrolysis Oils. Energy & Ene	2.5	13
341	Hartley transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 1989, 61, 428-431.	3.2	12
342	Magnitude-mode multiple-derivative spectra for resolution enhancement without loss in signal-to-noise ratio in Fourier transform spectroscopy. Journal of Mass Spectrometry, 1995, 30, 1237-1244.	0.7	12

#	Article	IF	CITATIONS
343	Identification of single and double sites of phosphorylation by ECD FT-ICR/MS in peptides related to the phosphorylation site domain of the myristoylated alanine-rich c kinase protein. Journal of the American Society for Mass Spectrometry, 2007, 18, 2137-2145.	1.2	12
344	Differential phosphopeptide expression in a benign breast tissue, and triple-negative primary and metastatic breast cancer tissues from the same African-American woman by LC-LTQ/FT-ICR mass spectrometry. Biochemical and Biophysical Research Communications, 2011, 412, 127-131.	1.0	12
345	A cooperative spectrum sensing scheme for cognitive radio ad hoc networks based on gossip and trust. , 2014, , .		12
346	Method for Isolation and Detection of Ketones Formed from High-Temperature Naphthenic Acid Corrosion. Energy & Energy & 2017, 31, 10674-10679.	2.5	12
347	Protein de novo sequencing by top-down and middle-down MS/MS: Limitations imposed by mass measurement accuracy and gaps in sequence coverage. International Journal of Mass Spectrometry, 2018, 427, 107-113.	0.7	12
348	Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Scientific Reports, 2020, 10, 10698.	1.6	12
349	Robust Consensus-Based Cooperative Spectrum Sensing under Insistent Spectrum Sensing Data Falsification Attacks. , 2015, , .		11
350	Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer. Journal of Mass Spectrometry, 2015, 50, 280-284.	0.7	11
351	An Improved Protocol for the Password Authenticated Association of IEEE 802.15.6 Standard That Alleviates Computational Burden on the Node. Symmetry, 2016, 8, 131.	1.1	11
352	Screening Petroleum Crude Oils for ARN Tetraprotic Acids with Molecularly Imprinted Polymers. Energy &	2.5	11
353	Mechanistic Origins of Enzyme Activation in Human Glucokinase Variants Associated with Congenital Hyperinsulinism. Biochemistry, 2018, 57, 1632-1639.	1.2	11
354	Tracking Elemental Composition through Hydrotreatment of an Upgraded Pyrolysis Oil Blended with a Light Gas Oil. Energy & Discourse (2020, 34, 16181-16186).	2.5	11
355	Effect of Sampling Rate on Fourier Transform Spectra: Oversampling is Overrated. Applied Spectroscopy, 1990, 44, 1111-1116.	1.2	10
356	Accurate mass measurement: taking full advantage of nature's isotopic complexity. Physica B: Condensed Matter, 2004, 346-347, 503-508.	1.3	10
357	Uncovering of a Short Internal Peptide Activates a tRNA Synthetase Procytokine. Journal of Biological Chemistry, 2012, 287, 20504-20508.	1.6	10
358	Large fullerenes in mass spectra. Molecular Physics, 2015, 113, 2359-2361.	0.8	10
359	Defining Spatial Secrecy Outage Probability for Exposure Region-Based Beamforming. IEEE Transactions on Wireless Communications, 2017, 16, 900-912.	6.1	10
360	Modulation Analysis in Macro-Molecular Communications. IEEE Access, 2019, 7, 11049-11065.	2.6	10

#	Article	IF	CITATIONS
361	Molecular Composition of Photooxidation Products Derived from Sulfur-Containing Compounds Isolated from Petroleum Samples. Energy & Energy & 14493-14504.	2.5	10
362	Detailed chemical composition of an oak biocrude and its hydrotreated product determined by positive atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Sustainable Energy and Fuels, 2020, 4, 2404-2410.	2.5	10
363	Advantages of Transform Methods in Chemistry. , 1982, , 1-43.		10
364	Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer. Review of Scientific Instruments, 1991, 62, 2612-2617.	0.6	9
365	lon trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 1995, 6, 936-946.	1.2	9
366	The †hybrid cell': a new compensated infinity cell for larger radius ion excitation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1423-1429.	0.7	9
367	Sequential Proteolysis and High-Field FTICR MS To Determine Disulfide Connectivity and 4-Maleimide TEMPO Spin-Label Location in L126C GM2 Activator Protein. Analytical Chemistry, 2009, 81, 7611-7617.	3.2	9
368	A Context-Aware Trust Framework for Resilient Distributed Cooperative Spectrum Sensing in Dynamic Settings. IEEE Transactions on Vehicular Technology, 2017, 66, 9177-9191.	3.9	9
369	The repeat region of cortactin is intrinsically disordered in solution. Scientific Reports, 2017, 7, 16696.	1.6	9
370	Security Optimization of Exposure Region-Based Beamforming With a Uniform Circular Array. IEEE Transactions on Communications, 2018, 66, 2630-2641.	4.9	9
371	High-frequency fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 1993, 4, 177-181.	1.2	8
372	Radiatively Self-Cooled Penning-Trapped Electrons:Â A New Way To Make Gas-Phase Negative Ions from Neutrals of Low Electron Affinity. Journal of the American Chemical Society, 1997, 119, 2267-2272.	6.6	8
373	Fullerenes and Polymers Produced by the Chemical Vapor Deposition Method. ACS Symposium Series, 1997, , 51-60.	0.5	8
374	Improved Mass Analysis of Oligoribonucleotides by 13C, 15N Double Depletion and Electrospray Ionization FT-ICR Mass Spectrometry. Analytical Chemistry, 2004, 76, 1804-1809.	3.2	8
375	Probing the Impact of the Knob-into-Hole Mutations on the Structure and Function of a Therapeutic Antibody. Analytical Chemistry, 2020, 92, 1582-1588.	3.2	8
376	lon-locked cyclotron resonance: a means for instantaneously changing ion cyclotron orbital radius. Chemical Physics Letters, 1991, 181, 168-174.	1.2	7
377	Filar ion cyclotron resonance ion trap: Spatially multiplexed dipolar and quadrupolar excitation for simultaneous ion axialization and detection. Review of Scientific Instruments, 1995, 66, 63-66.	0.6	7
378	External electron ionization 7T Fourier transform ion cyclotron resonance mass spectrometer for resolution and identification of volatile organic mixtures. Review of Scientific Instruments, 2006, 77, 025102.	0.6	7

#	Article	IF	Citations
379	Identification of phosphorylated human peptides by accurate mass measurement alone. International Journal of Mass Spectrometry, 2011, 308, 357-361.	0.7	7
380	Molecular-Based Nano-Communication Network: A Ring Topology Nano-Bots for In-Vivo Drug Delivery Systems. IEEE Access, 2019, 7, 12901-12913.	2.6	7
381	Pulse timing and optical interface between a neodymium: Yttrium aluminum garnet laser and a Fourier transform ion cyclotron resonance mass spectrometer. Rapid Communications in Mass Spectrometry, 1991, 5, 132-136.	0.7	6
382	Linearized dipolar excitation and detection and quadrupolarized axialization in a cylindrical ion cyclotron resonance ion trap. Journal of Mass Spectrometry, 1995, 30, 1593-1598.	0.7	6
383	Determination of Ion Magnetron Radial Distribution in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry., 1996, 10, 1855-1859.		6
384	Laser-induced fluorescence for ion tomography in a Penning trap. Journal of the American Society for Mass Spectrometry, 1998, 9, 925-930.	1.2	6
385	Photochemically Generated Polyacrylonitrileâ^'Silica Nanocomposites:Â Optimized Fabrication and Characterization. Chemistry of Materials, 2003, 15, 1289-1295.	3.2	6
386	Valence Parity to Distinguish c′ and z [•] lons from Electron Capture Dissociation/Electron Transfer Dissociation of Peptides: Effects of Isomers, Isobars, and Proteolysis Specificity. Analytical Chemistry, 2011, 83, 8024-8028.	3.2	6
387	Transmission Geometry Laser Desorption Atmospheric Pressure Photochemical Ionization Mass Spectrometry for Analysis of Complex Organic Mixtures. Analytical Chemistry, 2014, 86, 11151-11158.	3.2	6
388	Position-Based Control of Under-Constrained Haptics: A System for the Dexmo Glove. IEEE Robotics and Automation Letters, 2019, 4, 3497-3504.	3.3	6
389	Top-down proteomics—a near-future technique for clinical diagnosis?. Annals of Translational Medicine, 2020, 8, 136-136.	0.7	6
390	Neural correlates of texture perception during active touch. Behavioural Brain Research, 2022, 429, 113908.	1.2	6
391	High-Speed Preparative-Scale Separation and Purification of Ribosomal 5S and 5.8S RNA'S via Sephacryl S-300 Gel Filtration Chromatography. Preparative Biochemistry and Biotechnology, 1986, 16, 247-258.	0.4	5
392	Ammonia laser desorption/chemical ionization with ammonium bromide: Fourier transform ion cyclotron resonance mass spectrometry of aromatic hydrocarbons. Journal of the American Society for Mass Spectrometry, 1991, 2, 299-304.	1.2	5
393	Characterization of a single crystal cubic Prussian blue Co8(tacn)8(CN)12 cluster by ion trap and Fourier transform ion cyclotron resonance mass spectrometry with microelectrospray ionization. Journal of the American Society for Mass Spectrometry, 1999, 10, 352-354.	1.2	5
394	Paired single residue-transposed Lys-N and Lys-C digestions for label-free identification of N-terminal and C-terminal MS/MS peptide product ions: ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometr. Rapid Communications in Mass Spectrometry, 2015, 29, 659-666.	0.7	5
395	Characterization of Ketones Formed in the Open System Corrosion Test of Naphthenic Acids by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy & Samp; Fuels, 2019, 33, 4946-4950.	2.5	5
396	Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. PLoS ONE, 2017, 12, e0181869.	1.1	5

#	Article	IF	CITATIONS
397	Predicting the crossmodal correspondences of odors using an electronic nose. Heliyon, 2022, 8, e09284.	1.4	5
398	Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of airâ€sensitive solids. Review of Scientific Instruments, 1994, 65, 612-616.	0.6	4
399	Sites and extent of selenomethionine incorporation into recombinant Cas6 protein by top-down and bottom-up proteomics with 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2386-2392.	0.7	4
400	Single and Multi-metric Trust Management Frameworks for Use in Underwater Autonomous Networks. , $2015, , .$		4
401	Control of Hexamerization, Assembly, and Excluded Strand Specificity for the <i>Sulfolobus solfataricus</i> MCM Helicase. Biochemistry, 2018, 57, 5672-5682.	1.2	4
402	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance at 9.4 T. Rapid Communications in Mass Spectrometry, 1996, 10, 1824-1828.	0.7	4
403	Characterization of Structural Hemoglobin Variants by Top-Down Mass Spectrometry and R Programming Tools for Rapid Identification. Journal of the American Society for Mass Spectrometry, 2022, 33, 123-130.	1.2	4
404	Creating secure wireless regions using configurable beamforming. , 2014, , .		3
405	Biophysical Mass Spectrometry forÂBiopharmaceutical Process Development., 2015, , 307-339.		3
406	Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide <i>de novo</i> amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion. Rapid Communications in Mass Spectrometry, 2017, 31, 207-217.	0.7	3
407	Key Generation Based on Large Scale Fading. IEEE Transactions on Vehicular Technology, 2019, 68, 8222-8226.	3.9	3
408	Improved Transistorization of Varian Vâ€⊋100B Magnet Power Supply. Review of Scientific Instruments, 1973, 44, 918-919.	0.6	2
409	Structural investigation of helices II, III, and IV ofB. megaterium 5S ribosomal RNA by molecular dynamics calculations. Biopolymers, 1992, 32, 1263-1270.	1.2	2
410	Self-chemical ionization of diethylzinc. , 1999, 13, 1622-1625.		2
411	A quantitative evaluation of haptic data prediction techniques over best-effort network. , 2014, , .		2
412	On spatial security outage probability derivation of exposure region based beamforming with randomly located eavesdroppers. , 2016, , .		2
413	A fake timing attack against behavioural tests used in embedded IoT M2M communications. , 2017, , .		2
414	Spontaneous Calcium-Independent Dimerization of the Isolated First Domain of Neural Cadherin. Biochemistry, 2018, 57, 6404-6415.	1.2	2

#	Article	IF	CITATIONS
415	A Network-Adaptive Prediction Algorithm for Haptic Data Under Network Impairments. IEEE Access, 2021, 9, 52672-52683.	2.6	2
416	Isotopic Amplification, H/D Exchange, and Other Mass Spectrometric Strategies for Characterization of Biomacromolecular Topology and Binding Sites. , 2000, , 31-52.		2
417	Structural Dependence of Photogenerated Transformation Products for Aromatic Hydrocarbons Isolated from Petroleum. Energy & Energ	2.5	2
418	American Society for Mass Spectrometry 37th Annual Conference on Mass Spectrometry and Allied Topics (1989). Rapid Communications in Mass Spectrometry, 1989, 3, 247-247.	0.7	1
419	Biophysical mass spectrometry for biopharmaceutical process development., 2020,, 333-374.		1
420	A PERSONAL SCIENTIFIC HISTORY. Mass Spectrometry Reviews, 2022, 41, 243-247.	2.8	1
421	Alan G. Marshall. , 2015, , 143-144.		1
422	Internal ion impact ionization for Fourier-transform ion cyclotron resonance. Rapid Communications in Mass Spectrometry, 1994, 8, 14-21.	0.7	0
423	Fourier transform ion cyclotron resonance spectroscopy. Journal of Mass Spectrometry, 1996, 31, 586-587.	0.7	O
424	Frequency-sweep fourier tranform ion cyclotron resonance spectroscopy. Journal of Mass Spectrometry, 1996, 31, 588-589.	0.7	0
425	Biography and Publications of Eugene Nikolaev. International Journal of Mass Spectrometry, 2012, 325-327, 3-9.	0.7	O
426	Robust Consensus-Based Cooperative Spectrum Sensing under Insistent Spectrum Sensing Data Falsification Attacks. , 2014, , .		O
427	On spatial security outage probability derivation of exposure region based beamforming with randomly located eavesdroppers. , 2017 , , .		0
428	High Resolution Mass Spectrometry Advances in Oil Spill Analysis. International Oil Spill Conference Proceedings, 2021, 2021, .	0.1	0