Stefanie A Sydlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of biofilm formation induced by functional graphenic materials impregnated in Nile tilapia (Oreochromis niloticus) skin. Applied Surface Science, 2022, 576, 151768.	6.1	3
2	Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Scientific Reports, 2022, 12, 6960.	3.3	9
3	Bioactive, Ionâ€Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Advanced Healthcare Materials, 2021, 10, e2001189.	7.6	15
4	Grapheneâ€Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 2021, 10, e2001414.	7.6	50
5	The Blanket Effect: How Turning the World Upside Down Reveals the Nature of Graphene Oxide Cytocompatibility. Advanced Healthcare Materials, 2021, 10, e2001761.	7.6	5
6	Hands-On Laboratory Experience Using Adhesives for Remote Learning of Polymer Chemistry. Journal of Chemical Education, 2021, 98, 3153-3162.	2.3	7
7	Tunable, bacterio-instructive scaffolds made from functional graphenic materials. Biomaterials Science, 2021, 9, 2467-2479.	5.4	7
8	One-Shot Synthesis of Peptide Amphiphiles with Applications in Directed Graphenic Assembly. Biomacromolecules, 2020, 21, 3878-3886.	5.4	6
9	Peptide- and Protein-Graphene Oxide Conjugate Materials for Controlling Mesenchymal Stem Cell Fate. Regenerative Engineering and Translational Medicine, 2020, , 1.	2.9	9
10	Acid Mine Drainage Remediation: Aluminum Chelation Using Functional Graphenic Materials. ACS Applied Materials & Interfaces, 2020, 12, 32642-32648.	8.0	4
11	Polyester functional graphenic materials as a mechanically enhanced scaffold for tissue regeneration. RSC Advances, 2020, 10, 8548-8557.	3.6	6
12	Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomaterials Science, 2019, 7, 3876-3885.	5.4	46
13	Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility. Carbon, 2019, 154, 342-349.	10.3	14
14	Functional Graphenic Materials That Seal Condenser Tube Leaks in Situ. ACS Applied Materials & Interfaces, 2019, 11, 20881-20887.	8.0	3
15	Therapeutic Methacrylic Comonomers for Covalently Controlled Release from Mechanically Robust Bone Cement: Kinetics and Structure–Function Relationships. Macromolecules, 2019, 52, 3775-3786.	4.8	6
16	Teaching Polymer Theory through the Living Polymerization and Characterization of Poly(methyl) Tj ETQq0 0 0 r 2019, 96, 895-904.	gBT /Over 2.3	lock 10 Tf 50 11
17	Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 2442-2453.	5.8	30
18	Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019,	7.1	59

regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4855-4860. 18 7.1

STEFANIE A SYDLIK

#	Article	IF	CITATIONS
19	Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. Regenerative Engineering and Translational Medicine, 2019, 5, 190-209.	2.9	33
20	Peptideâ€functionalized reduced graphene oxide as a bioactive mechanically robust tissue regeneration scaffold. Polymer International, 2017, 66, 1190-1198.	3.1	15
21	Increased Toughness and Excellent Electronic Properties in Regioregular Random Copolymers of 3â€Alkylthiophenes and Thiophene. Advanced Electronic Materials, 2017, 3, 1600316.	5.1	24
22	Covalently-controlled drug delivery via therapeutic methacrylic tissue adhesives. Journal of Materials Chemistry B, 2017, 5, 7743-7755.	5.8	9
23	Cover Image, Volume 66, Issue 8. Polymer International, 2017, 66, i-i.	3.1	0
24	Graphene oxide as a scaffold for bone regeneration. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1437.	6.1	63
25	In It for the Long Haul: The Cytocompatibility of Aged Graphene Oxide and Its Degradation Products. Advanced Healthcare Materials, 2016, 5, 3056-3066.	7.6	32
26	<i>In Vivo</i> Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 2015, 9, 3866-3874.	14.6	197
27	A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering. Annals of Biomedical Engineering, 2015, 43, 641-656.	2.5	167
28	Phosphate Functionalized Graphene with Tunable Mechanical Properties. Advanced Materials, 2014, 26, 718-723.	21.0	41
29	Apparent Roughness as Indicator of (Local) Deoxygenation of Graphene Oxide. Chemistry of Materials, 2014, 26, 4849-4855.	6.7	10
30	The effect of mixing methods on the dispersion of carbon nanotubes during the solventâ€free processing of multiwalled carbon nanotube/epoxy composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 410-420.	2.1	47
31	Functional Graphenic Materials Via a Johnsonâ^'Claisen Rearrangement. Advanced Functional Materials, 2013, 23, 1873-1882.	14.9	59
32	Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 10270-10276.	3.1	151
33	Effects of graphene and carbon nanotube fillers on the shear properties of epoxy. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 997-1006.	2.1	10
34	Epoxy functionalized multi-walled carbon nanotubes for improved adhesives. Carbon, 2013, 59, 109-120.	10.3	105
35	Triptyceneâ€containing polyetherolefins via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2013, 51, 1695-1706.	2.3	16
36	Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices. Macromolecules, 2011, 44, 976-980.	4.8	160

#	Article	IF	CITATIONS
37	Well-defined, high molecular weight poly(3-alkylthiophene)s in thin-film transistors: side chain invariance in field-effect mobility. Journal of Materials Chemistry, 2010, 20, 3195.	6.7	50
38	Modular Functionalization of Carbon Nanotubes and Fullerenes. Journal of the American Chemical Society, 2009, 131, 8446-8454.	13.7	78