Stefanie A Sydlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095698/publications.pdf

Version: 2024-02-01

430874 330143 1,557 38 18 37 citations h-index g-index papers 38 38 38 3062 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>In Vivo</i> Compatibility of Graphene Oxide with Differing Oxidation States. ACS Nano, 2015, 9, 3866-3874.	14.6	197
2	A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering. Annals of Biomedical Engineering, 2015, 43, 641-656.	2.5	167
3	Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices. Macromolecules, 2011, 44, 976-980.	4.8	160
4	Supercapacitors from Free-Standing Polypyrrole/Graphene Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 10270-10276.	3.1	151
5	Epoxy functionalized multi-walled carbon nanotubes for improved adhesives. Carbon, 2013, 59, 109-120.	10.3	105
6	Modular Functionalization of Carbon Nanotubes and Fullerenes. Journal of the American Chemical Society, 2009, 131, 8446-8454.	13.7	78
7	Graphene oxide as a scaffold for bone regeneration. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1437.	6.1	63
8	Functional Graphenic Materials Via a Johnsonâ^'Claisen Rearrangement. Advanced Functional Materials, 2013, 23, 1873-1882.	14.9	59
9	Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4855-4860.	7.1	59
10	Well-defined, high molecular weight poly (3-alkylthiophene)s in thin-film transistors: side chain invariance in field-effect mobility. Journal of Materials Chemistry, 2010, 20, 3195.	6.7	50
11	Grapheneâ€Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Advanced Healthcare Materials, 2021, 10, e2001414.	7.6	50
12	The effect of mixing methods on the dispersion of carbon nanotubes during the solventâ€free processing of multiwalled carbon nanotube/epoxy composites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 410-420.	2.1	47
13	Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomaterials Science, 2019, 7, 3876-3885.	5.4	46
14	Phosphate Functionalized Graphene with Tunable Mechanical Properties. Advanced Materials, 2014, 26, 718-723.	21.0	41
15	Functional Graphenic Materials, Graphene Oxide, and Graphene as Scaffolds for Bone Regeneration. Regenerative Engineering and Translational Medicine, 2019, 5, 190-209.	2.9	33
16	In It for the Long Haul: The Cytocompatibility of Aged Graphene Oxide and Its Degradation Products. Advanced Healthcare Materials, 2016, 5, 3056-3066.	7.6	32
17	Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 2442-2453.	5.8	30
18	Increased Toughness and Excellent Electronic Properties in Regioregular Random Copolymers of 3â€Alkylthiophenes and Thiophene. Advanced Electronic Materials, 2017, 3, 1600316.	5.1	24

#	Article	IF	CITATIONS
19	Triptyceneâ€containing polyetherolefins via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2013, 51, 1695-1706.	2.3	16
20	Peptideâ€functionalized reduced graphene oxide as a bioactive mechanically robust tissue regeneration scaffold. Polymer International, 2017, 66, 1190-1198.	3.1	15
21	Bioactive, Ionâ€Releasing PMMA Bone Cement Filled with Functional Graphenic Materials. Advanced Healthcare Materials, 2021, 10, e2001189.	7.6	15
22	Phosphate modified graphene oxide: Long–term biodegradation and cytocompatibility. Carbon, 2019, 154, 342-349.	10.3	14
23	Teaching Polymer Theory through the Living Polymerization and Characterization of Poly(methyl) Tj ETQq1 1 0.78 2019, 96, 895-904.	4314 rgB ⁻ 2.3	T /Overlock 11
24	Effects of graphene and carbon nanotube fillers on the shear properties of epoxy. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 997-1006.	2.1	10
25	Apparent Roughness as Indicator of (Local) Deoxygenation of Graphene Oxide. Chemistry of Materials, 2014, 26, 4849-4855.	6.7	10
26	Covalently-controlled drug delivery via therapeutic methacrylic tissue adhesives. Journal of Materials Chemistry B, 2017, 5, 7743-7755.	5.8	9
27	Peptide- and Protein-Graphene Oxide Conjugate Materials for Controlling Mesenchymal Stem Cell Fate. Regenerative Engineering and Translational Medicine, 2020, , $1.$	2.9	9
28	Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Scientific Reports, 2022, 12, 6960.	3.3	9
29	Hands-On Laboratory Experience Using Adhesives for Remote Learning of Polymer Chemistry. Journal of Chemical Education, 2021, 98, 3153-3162.	2.3	7
30	Tunable, bacterio-instructive scaffolds made from functional graphenic materials. Biomaterials Science, 2021, 9, 2467-2479.	5.4	7
31	Therapeutic Methacrylic Comonomers for Covalently Controlled Release from Mechanically Robust Bone Cement: Kinetics and Structure–Function Relationships. Macromolecules, 2019, 52, 3775-3786.	4.8	6
32	One-Shot Synthesis of Peptide Amphiphiles with Applications in Directed Graphenic Assembly. Biomacromolecules, 2020, 21, 3878-3886.	5.4	6
33	Polyester functional graphenic materials as a mechanically enhanced scaffold for tissue regeneration. RSC Advances, 2020, 10, 8548-8557.	3.6	6
34	The Blanket Effect: How Turning the World Upside Down Reveals the Nature of Graphene Oxide Cytocompatibility. Advanced Healthcare Materials, 2021, 10, e2001761.	7.6	5
35	Acid Mine Drainage Remediation: Aluminum Chelation Using Functional Graphenic Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32642-32648.	8.0	4
36	Functional Graphenic Materials That Seal Condenser Tube Leaks in Situ. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20881-20887.	8.0	3

STEFANIE A SYDLIK

#	Article	IF	CITATIONS
37	Inhibition of biofilm formation induced by functional graphenic materials impregnated in Nile tilapia (Oreochromis niloticus) skin. Applied Surface Science, 2022, 576, 151768.	6.1	3
38	Cover Image, Volume 66, Issue 8. Polymer International, 2017, 66, i-i.	3.1	0