Jeffrey Andrews-Hanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2095486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A South Pole–Aitken impact origin of the lunar compositional asymmetry. Science Advances, 2022, 8, eabm8475.	10.3	11
2	Probing the source of ancient linear gravity anomalies on the Moon. Icarus, 2022, 380, 114978.	2.5	4
3	Magnetic Anomalies in Five Lunar Impact Basins: Implications for Impactor Trajectories and Inverse Modeling. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006668.	3.6	6
4	The hydrology and climate of Mars during the sedimentary infilling of Gale crater. Earth and Planetary Science Letters, 2021, 568, 117032.	4.4	12
5	Investigating the roles of magmatic volatiles, ground ice and impact-triggering on a very recent and highly explosive volcanic eruption on Mars. Earth and Planetary Science Letters, 2021, 567, 116986.	4.4	9
6	Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus, 2021, 365, 114499.	2.5	39
7	The tectonic architecture of wrinkle ridges on Mars. Icarus, 2020, 351, 113937.	2.5	19
8	Radial gravity anomalies associated with the ejecta of the Orientale basin. Icarus, 2019, 319, 444-458.	2.5	3
9	The Case Against an Early Lunar Dynamo Powered by Core Convection. Geophysical Research Letters, 2018, 45, 98-107.	4.0	30
10	Ring faults and ring dikes around the Orientale basin on the Moon. Icarus, 2018, 310, 1-20.	2.5	31
11	Controls on the Formation of Lunar Multiring Basins. Journal of Geophysical Research E: Planets, 2018, 123, 3035-3050.	3.6	19
12	Reexamination of Early Lunar Chronology With GRAIL Data: Terranes, Basins, and Impact Fluxes. Journal of Geophysical Research E: Planets, 2018, 123, 1596-1617.	3.6	25
13	The anatomy of a wrinkle ridge revealed in the wall of Melas Chasma, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 889-900.	3.6	10
14	A post-accretionary lull in large impacts on earlyÂMars. Nature Geoscience, 2017, 10, 344-348.	12.9	39
15	Reconstructing the past climate at Gale crater, Mars, from hydrological modeling of lateâ€stage lakes. Geophysical Research Letters, 2017, 44, 8196-8204.	4.0	25
16	The influence of subsurface flow on lake formation and north polar lake distribution on Titan. Icarus, 2016, 277, 103-124.	2.5	20
17	The formation of the South Tharsis Ridge Belt: Basin and Rangeâ€style extension on early Mars?. Journal of Geophysical Research E: Planets, 2016, 121, 916-943.	3.6	6
18	Identification of buried lunar impact craters from GRAIL data and implications for the nearside maria. Geophysical Research Letters, 2016, 43, 2445-2455.	4.0	56

#	Article	IF	CITATIONS
19	Formation of the Orientale lunar multiring basin. Science, 2016, 354, 441-444.	12.6	78
20	Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission. Science, 2016, 354, 438-441.	12.6	38
21	The fractured Moon: Production and saturation of porosity in the lunar highlands from impact cratering. Geophysical Research Letters, 2015, 42, 6939-6944.	4.0	63
22	Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Science Advances, 2015, 1, e1500852.	10.3	173
23	GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophysical Research Letters, 2014, 41, 5771-5777.	4.0	126
24	Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature, 2014, 514, 68-71.	27.8	85
25	Lunar interior properties from the GRAIL mission. Journal of Geophysical Research E: Planets, 2014, 119, 1546-1578.	3.6	185
26	Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry. Science, 2013, 339, 675-678.	12.6	177
27	The Crust of the Moon as Seen by GRAIL. Science, 2013, 339, 671-675.	12.6	726
28	The volcanic history of Olympus Mons from paleo-topography and flexural modeling. Earth and Planetary Science Letters, 2013, 363, 88-96.	4.4	91
29	The origin of the non-mare mascon gravity anomalies in lunar basins. Icarus, 2013, 222, 159-168.	2.5	35
30	Evidence for ring-faults around the Orientale basin on the Moon from gravity. Icarus, 2013, 226, 694-707.	2.5	15
31	The Origin of Lunar Mascon Basins. Science, 2013, 340, 1552-1555.	12.6	174
32	Reconstructing the distribution and depositional history of the sedimentary deposits of Arabia Terra, Mars. Icarus, 2012, 220, 311-330.	2.5	66
33	Density variations within the south polar layered deposits of Mars. Journal of Geophysical Research, 2012, 117, .	3.3	14
34	The formation of Valles Marineris: 1. Tectonic architecture and the relative roles of extension and subsidence. Journal of Geophysical Research, 2012, 117, .	3.3	33
35	The formation of Valles Marineris: 2. Stress focusing along the buried dichotomy boundary. Journal of Geophysical Research, 2012, 117, .	3.3	27
36	The formation of Valles Marineris: 3. Trough formation through superâ€isostasy, stress, sedimentation, and subsidence. Journal of Geophysical Research, 2012, 117, .	3.3	40

#	Article	IF	CITATIONS
37	Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. Journal of Geophysical Research, 2011, 116, .	3.3	112
38	Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. Journal of Geophysical Research, 2010, 115, .	3.3	74
39	Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. Journal of Geophysical Research, 2010, 115, .	3.3	148
40	A mega-landslide on Mars. Nature Geoscience, 2009, 2, 248-249.	12.9	7
41	Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. Journal of Geophysical Research, 2009, 114, .	3.3	159
42	The Borealis basin and the origin of the martian crustal dichotomy. Nature, 2008, 453, 1212-1215.	27.8	285
43	Strikeâ€slip faults on Mars: Observations and implications for global tectonics and geodynamics. Journal of Geophysical Research, 2008, 113, .	3.3	62
44	Density of Mars' South Polar Layered Deposits. Science, 2007, 317, 1718-1719.	12.6	94
45	Meridiani Planum and the global hydrology of Mars. Nature, 2007, 446, 163-166.	27.8	223