
Mohammad Kazem Tavassoly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2094696/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The construction of some important classes of generalized coherent states: the nonlinear coherent states method. Journal of Physics A, 2004, 37, 8111-8127.	1.6	84
2	Dynamics of entropy and nonclassical properties of the state of a ĥ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 035502.	1.5	63
3	Entanglement dynamics and position-momentum entropic uncertainty relation of a ĥ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1109.	2.1	55
4	Deformed photon-added nonlinear coherent states and their non-classical properties. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 225301.	2.1	49
5	Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field. Laser Physics, 2014, 24, 045202.	1.2	47
6	Construction of the dual family of Gazeau–Klauder coherent states via temporally stable nonlinear coherent states. Journal of Mathematical Physics, 2005, 46, 042110.	1.1	46
7	Entropy squeezing and atomic inversion in the <i>k</i> -photon Jaynes—Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach. Chinese Physics B, 2014, 23, 074203.	1.4	45
8	Entanglement, quantum statistics and squeezing of two <i>Ξ</i> -type three-level atoms interacting nonlinearly with a single-mode field. Physica Scripta, 2014, 89, 075101.	2.5	45
9	Dynamics and protection of entanglement in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi>-qubit systems within Markovian and non-Markovian environments. Physical Review A, 2016, 93, .</mml:math 	2.5	45
10	Entanglement analysis of a two-atom nonlinear Jaynes–Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift. Laser Physics, 2014, 24, 125203.	1.2	39
11	Quantum entanglement and position–momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 145506.	1.5	38
12	Representations of coherent states in non-orthogonal bases. Journal of Physics A, 2004, 37, 4407-4422.	1.6	37
13	Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2810.	2.1	36
14	Generation of a class of SU(1,1) coherent states of the Gilmore–Perelomov type and a class of SU(2) coherent states and their superposition. Physica Scripta, 2012, 85, 035404.	2.5	30
15	DYNAMICS OF STATES IN THE NONLINEAR INTERACTION REGIME BETWEEN A THREE-LEVEL ATOM AND GENERALIZED COHERENT STATES AND THEIR NON-CLASSICAL FEATURES. International Journal of Modern Physics B, 2012, 26, 1250027.	2.0	28
16	Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. European Physical Journal Plus, 2017, 132, 1.	2.6	28
17	Generalized deformed Kerr states and their physical properties. Physica Scripta, 2012, 86, 035401.	2.5	27
18	Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes. International Journal of Theoretical Physics, 2015, 54, 2839-2854.	1.2	26

#	Article	IF	CITATIONS
19	Dynamics and protecting of entanglement in two-level systems interacting with a dissipative cavity: the Gardiner–Collett approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 165502.	1.5	26
20	Dynamics of different entanglement measures of two three-level atoms interacting nonlinearly with a single-mode field. European Physical Journal Plus, 2015, 130, 1.	2.6	26
21	Quantum Zeno and anti-Zeno effects on the entanglement dynamics of qubits dissipating into a common and non-Markovian environment. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1723.	2.1	24
22	Quantum engineering and nonclassical properties of SU(1,1) and SU(2) entangled nonlinear coherent states. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2345.	2.1	22
23	A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method. Chinese Physics B, 2016, 25, 100303.	1.4	22
24	On the entanglement swapping by using the beam splitter. European Physical Journal Plus, 2017, 132, 1.	2.6	21
25	Representations of coherent and squeezed states in af-deformed Fock space. Journal of Physics A, 2004, 37, 5649-5660.	1.6	19
26	Approximate conditional teleportation of a \$\$varLambda \$\$ ĥ -type three-level atomic state based on cavity QED method beyond Bell-state measurement. Quantum Information Processing, 2017, 16, 1.	2.2	19
27	Generation and nonclassicality of entangled states via the interaction of two three-level atoms with a quantized cavity field assisted by a driving external classical field. Quantum Information Processing, 2015, 14, 1279-1303.	2.2	18
28	New nonlinear coherent states associated with inverse bosonic and <i>f</i> -deformed ladder operators. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 285305.	2.1	17
29	Generation of entangled coherent-squeezed states: their entanglement and nonclassical properties. Quantum Information Processing, 2016, 15, 1513-1527.	2.2	17
30	Entanglement dynamics of moving qubits in a common environment. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 400.	2.1	17
31	Nonlinear semi-coherent states, their nonclassical features and phase properties. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 135301.	2.1	16
32	A novel approach to entanglement dynamics of two two-level atoms interacting with dissipative cavities. European Physical Journal Plus, 2015, 130, 1.	2.6	16
33	Entanglement swapping between dissipative systems. Physical Review A, 2016, 94, .	2.5	16
34	Quantum dynamics of a BEC interacting with a single-mode quantized field under the influence of a dissipation process: thermal and squeezed vacuum reservoirs. Laser Physics, 2017, 27, 095202.	1.2	16
35	Interaction of a <i>î></i> -type three-level atom with a single-mode field without rotating wave approximation: perturbation theory approach. Physica Scripta, 2015, 90, 025103.	2.5	14
36	Single-mode nonlinear excited entangled coherent states and their nonclassical properties. Physica Scripta, 2015, 90, 015101.	2.5	14

#	Article	IF	CITATIONS
37	Collapse-revival in entanglement and photon statistics: the interaction of a three-level atom with a two-mode quantized field in cavity optomechanics. Laser Physics, 2016, 26, 125204.	1.2	14
38	Dynamics and maintenance of bipartite entanglement via the Stark shift effect inside dissipative reservoirs. Laser Physics Letters, 2018, 15, 035205.	1.4	14
39	Quantum phase distribution and the number phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems. Chinese Physics B, 2012, 21, 054208.	1.4	13
40	Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes. Chinese Physics B, 2018, 27, 040303.	1.4	13
41	Atomic motion and dipole–dipole effects on the stability of atom–atom entanglement in Markovian/non-Markovian reservoir. Modern Physics Letters A, 2019, 34, 1950077.	1.2	13
42	Generation of entangled squeezed states: their entanglement and quantum polarization. Laser Physics, 2015, 25, 115201.	1.2	12
43	Excitation and depletion of entangled squeezed states: their properties and generation. Physica Scripta, 2015, 90, 085102.	2.5	12
44	Generation of <i>SU</i> (1, 1) and <i>SU</i> (2) entangled states in a quantized cavity field by strong-driving-assisted classical field approach. Laser Physics, 2015, 25, 055203.	1.2	12
45	Entanglement swapping to a qutrit-qutrit atomic system in the presence of Kerr medium and detuning parameter. European Physical Journal Plus, 2016, 131, 1.	2.6	12
46	The influence of atomic dipole–dipole interaction on the dynamics ofÂthe population inversion and entanglement of two atoms interacting non-resonantly with two coupled modes field. Modern Physics Letters B, 2017, 31, 1750038.	1.9	12
47	The field-field and dipole-dipole coupling effects on the entanglement of the interaction between two qutrits with a two-mode field. Modern Physics Letters A, 2020, 35, 2050183.	1.2	12
48	Generation of Werner-like states via a two-qubit system plunged in a thermal reservoir and their application in solving binary classification problems. Scientific Reports, 2021, 11, 3554.	3.3	12
49	The effects of damping on the approximate teleportation and nonclassical properties in the atom-field interaction. European Physical Journal D, 2016, 70, 1.	1.3	11
50	Entanglement Evolution Between Various Subsystems of Two Three-level Atoms Interacting with a Two-mode Quantized Field in the Presence of Converter Terms. International Journal of Theoretical Physics, 2016, 55, 2573-2587.	1.2	11
51	Pulsed optical parametric amplification based on photonic crystal fibres. Journal of Modern Optics, 2017, 64, 357-365.	1.3	11
52	Generation of nonlinear motional trio coherent states and their nonclassical properties. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 175502.	1.5	10
53	Generation of some entangled states of the cavity field. Quantum Information Processing, 2015, 14, 593-606.	2.2	10
54	The generation and properties of new classes of multipartite entangled coherent squeezed states in a conducting cavity. Annalen Der Physik, 2017, 529, 1600246.	2.4	10

#	Article	IF	CITATIONS
55	Quantum repeater protocol in mixed single- and two-mode Tavis-Cummings models. Europhysics Letters, 2018, 123, 24002.	2.0	10
56	Atom and field squeezed output of three-level atom laser surrounded by a Kerr medium in the electromagnetically induced transparency regime. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 86.	2.1	10
57	Dissipative quantum repeater. Quantum Information Processing, 2019, 18, 1.	2.2	10
58	Macroscopic Mechanical Entanglement Stability in Two Distant Dissipative Optomechanical Systems. Annalen Der Physik, 2022, 534, .	2.4	10
59	ON A GENERAL FORMALISM OF NONLINEAR CHARGE COHERENT STATES, THEIR QUANTUM STATISTICS AND NONCLASSICAL PROPERTIES. International Journal of Modern Physics A, 2010, 25, 3481-3504.	1.5	9
60	Production, Entanglement and Polarization of Nonlinear Excited Entangled Coherent States of Some Realizations of the SU(1,1) and SU(2) Groups. International Journal of Theoretical Physics, 2016, 55, 563-576.	1.2	9
61	A trapped ion in an optomechanical system: entanglement dynamics. European Physical Journal D, 2018, 72, 1.	1.3	9
62	Entanglement of a damped non-degenerate \$Diamond\$ -type atom interacting nonlinearly with a single-mode cavity. European Physical Journal Plus, 2016, 131, 1.	2.6	8
63	Coping with attenuation of quantum correlations of two qubit systems in dissipative environments: multi-photon transitions. European Physical Journal D, 2018, 72, 1.	1.3	8
64	One-pump fiber optical parametric amplifiers: from the pulsed to the continuous wave operation. Optical Engineering, 2018, 57, 1.	1.0	8
65	Description of Atom-Field Interaction via Quantized Caldirola-Kanai Hamiltonian. International Journal of Theoretical Physics, 2017, 56, 1218-1232.	1.2	7
66	Teleportation with superconducting qubits. European Physical Journal D, 2020, 74, 1.	1.3	7
67	Quantum information transfer and entangled state generation using superconducting qubits in the absence and presence of dissipation. European Physical Journal Plus, 2020, 135, 1.	2.6	7
68	Entanglement Dynamics of a Dissipative Two-qubit System Under the Influence of a Global Environment. International Journal of Theoretical Physics, 2020, 59, 1742-1754.	1.2	7
69	Photon blockade in a system consisting of two optomechanical cavities via photon hopping. European Physical Journal Plus, 2021, 136, 1.	2.6	7
70	Quantum repeater protocol using an arrangement of QED–optomechanical hybrid systems. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2669.	2.1	7
71	Damping effect in the interaction of a Ξ-type three-level atom with a single-mode field: Caldirola–Kanai approach. Laser Physics, 2016, 26, 065204.	1.2	6
72	Dipole–dipole interaction between trapped two-level ions interacting with a quantized field in the Lamb–Dicke regime. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 382.	2.1	6

#	Article	IF	CITATIONS
73	Entanglement swapping and teleportation using Mach–Zehnder interferometer assisted with a cross-Kerr cell: generation of tripartite entangled state. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	6
74	Teleportation of squeezed states in the absence and presence of dissipation. European Physical Journal Plus, 2019, 134, 1.	2.6	6
75	Toward a quantum repeater protocol based on the coherent state approach. Laser Physics, 2019, 29, 085202.	1.2	6
76	Quantum repeater using three-level atomic states in the presence of dissipation: stability of entanglement. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 085502.	1.5	6
77	Qubit movement-assisted entanglement swapping. Chinese Physics B, 2020, 29, 050304.	1.4	6
78	Stability of various entanglements in the interaction between two two-level atoms with a quantized field under the influences of several decay sources. Indian Journal of Physics, 2018, 92, 955-968.	1.8	5
79	Algebraic and group treatments to nonlinear displaced number states and their nonclassicality features: A new approach. Chinese Physics B, 2015, 24, 064204.	1.4	4
80	Dynamics of Nonclassicality of Time- and Conductivity-Dependent Squeezed States and Excited Even/Odd Coherent States. Communications in Theoretical Physics, 2017, 67, 365.	2.5	4
81	Spectral properties of trapped two-level ions interacting with quantized fields. Physical Review A, 2017, 95, .	2.5	4
82	Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime. International Journal of Theoretical Physics, 2018, 57, 1645-1658.	1.2	4
83	Population imbalance, macroscopic tunneling and intermodal entanglement of two-mode Bose–Einstein condensate under the influence of dissipation process. International Journal of Modern Physics B, 2019, 33, 1950181.	2.0	4
84	Counter rotating terms and dipole–dipole interaction effects on the entanglement and population inversion of two qubits interacting with a two-mode field. Journal of Modern Optics, 2021, 68, 522-535.	1.3	4
85	Phonon blockade in a system consisting of two optomechanical cavities with quadratic cavity–membrane coupling and phonon hopping. European Physical Journal D, 2022, 76, 1.	1.3	4
86	The decoherence of the quantum excitation of even/odd coherent states in a photon-loss channel. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 165502.	1.5	3
87	Dynamics of the interaction between a trapped three-level ion with a two-mode quantized field in the nonlinear regime in the presence of a Kerr medium. Journal of Modern Optics, 2017, 64, 1463-1478.	1.3	3
88	The influence of excitation number of photon-added coherent state field on the entanglement swapping process. International Journal of Modern Physics B, 2017, 31, 1750198.	2.0	3
89	Considerable improvement of entanglement swapping by considering multiphoton transitions via cavity quantum electrodynamics method. International Journal of Modern Physics B, 2018, 32, 1850093.	2.0	3
90	Decoherence of quantum excitation of even/odd coherent states in thermal environment. Pramana - Journal of Physics, 2016, 86, 763-776.	1.8	2

#	Article	IF	CITATIONS
91	Damping, field–field correlation and dipole–dipole interaction effects on the entanglement and atomic inversion dynamics. International Journal of Modern Physics B, 2017, 31, 1750006.	2.0	2
92	Dynamic Properties for BEC in an Optical Cavity with Atom-Photon Nonlinear Interaction. International Journal of Theoretical Physics, 2019, 58, 844-864.	1.2	2
93	Decoherence in quantum lossy systems: superoperator and matrix techniques. European Physical Journal D, 2017, 71, 1.	1.3	1
94	Photon entanglement through linear optics networks with birefringent crystals. European Physical Journal D, 2021, 75, 1.	1.3	1
95	Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes. Chinese Physics B, 2021, 30, 034205.	1.4	1
96	Distributed Entangled State Production by Using Quantum Repeater Protocol. International Journal of Theoretical Physics, 2021, 60, 1870-1882.	1.2	1
97	The Influence of Counter Rotating Terms on the Entanglement Dynamics of Two Dipole-Coupled Qutrits Interacting with a Two-Mode Field: Intensity-Dependent Coupling Approach. International Journal of Theoretical Physics, 2022, 61, .	1.2	1
98	ON THE EFFECT OF TEMPORAL STABILITY OF COHERENT STATES ON THE STABILITY OF NONCLASSICALITY FEATURES. International Journal of Modern Physics B, 2012, 26, 1250160.	2.0	0
99	Generation of various classes of entangled states in a two-mode Bose–Einstein condensate under the influence of interatom collisions. Modern Physics Letters A, 2019, 34, 1950282.	1.2	Ο