## Anna Norrby-Teglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2094239/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | COVIDâ€19â€specific metabolic imprint yields insights into multiorgan system perturbations. European<br>Journal of Immunology, 2022, 52, 503-510.                                                                                                      | 2.9  | 7         |
| 2  | Mucosa-Associated Invariant T Cell Hypersensitivity to Staphylococcus aureus Leukocidin ED and Its<br>Modulation by Activation. Journal of Immunology, 2022, , ji2100912.                                                                              | 0.8  | 2         |
| 3  | Consistent Biofilm Formation by Streptococcus pyogenes emm 1 Isolated From Patients With Necrotizing Soft Tissue Infections. Frontiers in Microbiology, 2022, 13, 822243.                                                                              | 3.5  | 2         |
| 4  | Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections. BMC Medicine, 2022, 20, 173.                                                              | 5.5  | 3         |
| 5  | The Karolinska <scp>KI</scp> /K <scp>COVID</scp> â€19 immune atlas: An open resource for<br>immunological research and educational purposes. Scandinavian Journal of Immunology, 2022, 96, .                                                           | 2.7  | 4         |
| 6  | Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A<br>Multicenter Prospective Study. Clinical Infectious Diseases, 2021, 72, 293-300.                                                                     | 5.8  | 61        |
| 7  | Discriminatory plasma biomarkers predict specific clinical phenotypes of necrotizing soft-tissue infections. Journal of Clinical Investigation, 2021, 131, .                                                                                           | 8.2  | 7         |
| 8  | Adjunctive Rifampicin Increases Antibiotic Efficacy in Group A Streptococcal Tissue Infection Models.<br>Antimicrobial Agents and Chemotherapy, 2021, 65, e0065821.                                                                                    | 3.2  | 1         |
| 9  | High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of<br>granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, .                          | 7.1  | 52        |
| 10 | Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                           | 7.1  | 104       |
| 11 | Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal<br>Superantigens in Patients With Necrotizing Soft Tissue Infections. Clinical Infectious Diseases, 2020,<br>71, 1772-1775.                            | 5.8  | 18        |
| 12 | Integrated Univariate, Multivariate, and Correlation-Based Network Analyses Reveal<br>Metabolite-Specific Effects on Bacterial Growth and Biofilm Formation in Necrotizing Soft Tissue<br>Infections. Journal of Proteome Research, 2020, 19, 688-698. | 3.7  | 16        |
| 13 | Prothrombotic and Proinflammatory Activities of the β-Hemolytic Group B Streptococcal Pigment.<br>Journal of Innate Immunity, 2020, 12, 291-303.                                                                                                       | 3.8  | 12        |
| 14 | Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell, 2020, 183, 158-168.e14.                                                                                                                                   | 28.9 | 1,561     |
| 15 | Treatment of Necrotizing Soft Tissue Infections: IVIG. Advances in Experimental Medicine and Biology, 2020, 1294, 105-125.                                                                                                                             | 1.6  | 4         |
| 16 | Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. Advances in<br>Experimental Medicine and Biology, 2020, 1294, 127-150.                                                                                                      | 1.6  | 10        |
| 17 | MAIT cell activation and dynamics associated with COVID-19 disease severity. Science Immunology, 2020, 5, .                                                                                                                                            | 11.9 | 147       |
| 18 | The INFECT-Project: An International and Multidisciplinary Project on Necrotizing Soft Tissue<br>Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 1-6.                                                                           | 1.6  | 0         |

| #  | Article                                                                                                                                                                                                                       | IF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 19 | Patient's characteristics and outcomes in necrotising soft-tissue infections: results from a<br>Scandinavian, multicentre, prospective cohort study. Intensive Care Medicine, 2019, 45, 1241-1251.                            | 8.2              | 82                |
| 20 | Is It Time to Reconsider the Group A Streptococcal Rheumatogenic Concept?. Clinical Infectious Diseases, 2019, 70, 1461-1462.                                                                                                 | 5.8              | 3                 |
| 21 | Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nature Communications, 2019, 10, 3846.                                                     | 12.8             | 25                |
| 22 | Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High<br>Rates of Internalization and Cytotoxicity Toward Human Myoblasts. Journal of Infectious Diseases,<br>2019, 220, 710-719. | 4.0              | 8                 |
| 23 | Group A Streptococcal DNase Sda1 Impairs Plasmacytoid Dendritic Cells' Type 1 InterferonÂResponse.<br>Journal of Investigative Dermatology, 2019, 139, 1284-1293.                                                             | 0.7              | 11                |
| 24 | MAIT Cells Are Major Contributors to the Cytokine Response in Group A Streptococcal Toxic Shock<br>Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>25923-25931.      | 7.1              | 45                |
| 25 | Immunoregulation of Neutrophil Extracellular Trap Formation by Endothelial-Derived p33 (gC1q) Tj ETQq1 1 0.78                                                                                                                 | 4314 rgBT<br>3.8 | /Overlock 1<br>11 |
| 26 | High HMGB1 levels in sputum are related to pneumococcal bacteraemia but not to disease severity in community-acquired pneumonia. Scientific Reports, 2018, 8, 13428.                                                          | 3.3              | 13                |
| 27 | Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic<br>Shock Syndrome: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, 2018, 67, 1434-1436.                 | 5.8              | 104               |
| 28 | Protein SIC Secreted from Streptococcus pyogenes Forms Complexes with Extracellular Histones That<br>Boost Cytokine Production. Frontiers in Immunology, 2018, 9, 236.                                                        | 4.8              | 14                |
| 29 | Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo.<br>Blood, 2017, 129, 1991-2001.                                                                                        | 1.4              | 227               |
| 30 | Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Scientific Reports, 2017, 7, 42179.                                 | 3.3              | 44                |
| 31 | Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Medicine, 2017, 43, 1585-1593.                                               | 8.2              | 86                |
| 32 | Fever in the Emergency Department Predicts Survival of Patients With Severe Sepsis and Septic Shock<br>Admitted to the ICU*. Critical Care Medicine, 2017, 45, 591-599.                                                       | 0.9              | 79                |
| 33 | Shocking superantigens promote establishment of bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10000-10002.                                                 | 7.1              | 3                 |
| 34 | Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis. BMC Medicine, 2017, 15, 172.                                                                               | 5.5              | 132               |
| 35 | Bacterial deception of MAIT cells in a cloud of superantigen and cytokines. PLoS Biology, 2017, 15, e2003167.                                                                                                                 | 5.6              | 22                |
| 36 | Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse. PLoS<br>Pathogens, 2016, 12, e1005732.                                                                                         | 4.7              | 32                |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LL-37 Triggers Formation of <b><i>Streptococcus pyogenes</i></b> Extracellular<br>Vesicle-Like Structures with Immune Stimulatory Properties. Journal of Innate Immunity, 2016, 8,<br>243-257.                               | 3.8 | 29        |
| 38 | A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Scientific Reports, 2016, 6, 31360.                                                         | 3.3 | 32        |
| 39 | Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release. Scientific Reports, 2016, 6, 21288.                                       | 3.3 | 32        |
| 40 | In tribute to Singh Chhatwal. Environmental Microbiology Reports, 2016, 8, 555-555.                                                                                                                                          | 2.4 | 0         |
| 41 | Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight, 2016, 1, e87882.                                                                                                                           | 5.0 | 61        |
| 42 | Modeling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. DMM Disease Models and Mechanisms, 2015, 8, 1413-25.                                                           | 2.4 | 47        |
| 43 | Sequence variability is correlated with weak immunogenicity in <i>Streptococcus pyogenes</i> MÂprotein. MicrobiologyOpen, 2015, 4, 774-789.                                                                                  | 3.0 | 13        |
| 44 | Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections. Scientific Reports, 2015, 5, 16945.                                                                  | 3.3 | 36        |
| 45 | Reply to Arends and Harkisoen. Clinical Infectious Diseases, 2015, 60, 324-325.                                                                                                                                              | 5.8 | 0         |
| 46 | Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte<br>Recruitment In Vivo. PLoS Pathogens, 2015, 11, e1005319.                                                                          | 4.7 | 54        |
| 47 | Levels of Alpha-Toxin Correlate with Distinct Phenotypic Response Profiles of Blood Mononuclear<br>Cells and with agr Background of Community-Associated Staphylococcus aureus Isolates. PLoS ONE,<br>2014, 9, e106107.      | 2.5 | 20        |
| 48 | Clinical Efficacy of Polyspecific Intravenous Immunoglobulin Therapy in Patients With Streptococcal<br>Toxic Shock Syndrome: A Comparative Observational Study. Clinical Infectious Diseases, 2014, 59,<br>851-857.          | 5.8 | 186       |
| 49 | HMGB1 in severe soft tissue infections caused by Streptococcus pyogenes. Frontiers in Cellular and Infection Microbiology, 2014, 4, 4.                                                                                       | 3.9 | 32        |
| 50 | Beyond the traditional immune response: bacterial interaction with phagocytic cells. International<br>Journal of Antimicrobial Agents, 2013, 42, S13-S16.                                                                    | 2.5 | 7         |
| 51 | Prognostic Value and Therapeutic Potential of TREM-1 in <b><i>Streptococcus<br/>pyogenes-</i></b> Induced Sepsis. Journal of Innate Immunity, 2013, 5, 581-590.                                                              | 3.8 | 24        |
| 52 | Genome Sequencing Unveils a Novel Sea Enterotoxin-Carrying PVL Phage in Staphylococcus aureus<br>ST772 from India. PLoS ONE, 2013, 8, e60013.                                                                                | 2.5 | 27        |
| 53 | Short- and Long-Term Mortality in Severe Sepsis/Septic Shock in a Setting with Low Antibiotic<br>Resistance: A Prospective Observational Study in a Swedish University Hospital. Frontiers in Public<br>Health, 2013, 1, 51. | 2.7 | 17        |
| 54 | Clinical and Microbiologic Characteristics of Invasive Streptococcus pyogenes Infections in North and South India. Journal of Clinical Microbiology, 2012, 50, 1626-1631.                                                    | 3.9 | 21        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Intracellular Streptococcus pyogenes in Human Macrophages Display an Altered Gene Expression<br>Profile. PLoS ONE, 2012, 7, e35218.                                                                             | 2.5  | 33        |
| 56 | The Hypervariable Region of Streptococcus pyogenes M Protein Escapes Antibody Attack by Antigenic Variation and Weak Immunogenicity. Cell Host and Microbe, 2011, 10, 147-157.                                  | 11.0 | 43        |
| 57 | Erysipelas Caused by Group A Streptococcus Activates the Contact System and Induces the Release of<br>Heparin-Binding Protein. Journal of Investigative Dermatology, 2010, 130, 1365-1372.                      | 0.7  | 31        |
| 58 | Reduced iNOS expression in adenoids from children with otitis media with effusion. Pediatric Allergy and Immunology, 2010, 21, 1151-1156.                                                                       | 2.6  | 8         |
| 59 | M1 Protein-Dependent Intracellular Trafficking Promotes Persistence and Replication of<br><i>Streptococcus pyogenes</i> in Macrophages. Journal of Innate Immunity, 2010, 2, 534-545.                           | 3.8  | 51        |
| 60 | Inducible Cyclooxygenase Released Prostaglandin E2Modulates the Severity of Infection Caused byStreptococcuspyogenes. Journal of Immunology, 2010, 185, 2372-2381.                                              | 0.8  | 42        |
| 61 | Getting under the Skin: The Immunopathogenesis of <i>Streptococcus pyogenes</i> Deep Tissue<br>Infections. Clinical Infectious Diseases, 2010, 51, 58-65.                                                       | 5.8  | 125       |
| 62 | Neutrophil-Derived Hyperresistinemia in Severe Acute Streptococcal Infections. Journal of<br>Immunology, 2009, 183, 4047-4054.                                                                                  | 0.8  | 49        |
| 63 | Bacterial Phenotype Variants in Group B Streptococcal Toxic Shock Syndrome1. Emerging Infectious Diseases, 2009, 15, 223-232.                                                                                   | 4.3  | 48        |
| 64 | Protein C Inhibitor—A Novel Antimicrobial Agent. PLoS Pathogens, 2009, 5, e1000698.                                                                                                                             | 4.7  | 34        |
| 65 | Severe group A streptococcal infections in Uppsala County, Sweden: Clinical and molecular characterization of a case cluster from 2006 to 2007. Scandinavian Journal of Infectious Diseases, 2009, 41, 823-830. | 1.5  | 15        |
| 66 | Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood, 2008, 111, 3070-3080.                                                                            | 1.4  | 491       |
| 67 | Cathelicidin LL-37 in Severe <i>Streptococcus pyogenes</i> Soft Tissue Infections in Humans. Infection and Immunity, 2008, 76, 3399-3404.                                                                       | 2.2  | 79        |
| 68 | CD46 Contributes to the Severity of Group A Streptococcal Infection. Infection and Immunity, 2008, 76, 3951-3958.                                                                                               | 2.2  | 28        |
| 69 | Antibodies against a Surface Protein of Streptococcus pyogenes Promote a Pathological Inflammatory<br>Response. PLoS Pathogens, 2008, 4, e1000149.                                                              | 4.7  | 36        |
| 70 | Molecular and Clinical Characteristics of Invasive Group A Streptococcal Infection in Sweden.<br>Clinical Infectious Diseases, 2007, 45, 450-458.                                                               | 5.8  | 158       |
| 71 | Streptococcus agalactiae in Relapsing Cellulitis. Clinical Infectious Diseases, 2007, 44, 1141-1142.                                                                                                            | 5.8  | 12        |
| 72 | Pronounced elevation of resistin correlates with severity of disease in severe sepsis and septic shock.<br>Critical Care Medicine, 2007, 35, 1536-1542.                                                         | 0.9  | 120       |

Anna Norrby-Teglund

| #  | Article                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Soluble M1 protein of Streptococcus pyogenes triggers potent T cell activation. Cellular<br>Microbiology, 2007, 10, 070928215112001-???.                                                                                                                                           | 2.1  | 43        |
| 74 | Severe streptococcal infection is associated with M proteinâ€induced platelet activation and thrombus formation. Molecular Microbiology, 2007, 65, 1147-1157.                                                                                                                      | 2.5  | 74        |
| 75 | The role of high mobility group box-1 protein in severe sepsis. Current Opinion in Infectious Diseases, 2006, 19, 231-236.                                                                                                                                                         | 3.1  | 57        |
| 76 | Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection. PLoS Medicine, 2006, 3, e53.                                                                                                                                                                        | 8.4  | 126       |
| 77 | Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in<br>relation to microbiological aetiology and severity of sepsis. Journal of Internal Medicine, 2006, 260,<br>509-516.                                                       | 6.0  | 77        |
| 78 | Release of SpeA from Streptococcus pyogenes after exposure to penicillin: Dependency on dose and inhibition by clindamycin. Scandinavian Journal of Infectious Diseases, 2006, 38, 983-987.                                                                                        | 1.5  | 10        |
| 79 | Streptococcal M Protein: A Multipotent and Powerful Inducer of Inflammation. Journal of<br>Immunology, 2006, 177, 1221-1228.                                                                                                                                                       | 0.8  | 132       |
| 80 | Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock*. Critical Care Medicine, 2005, 33, 564-573.                                                                                                                     | 0.9  | 399       |
| 81 | Variations in emm Type among Group A Streptococcal Isolates Causing Invasive or Noninvasive<br>Infections in a Nationwide Study. Journal of Clinical Microbiology, 2005, 43, 3101-3109.                                                                                            | 3.9  | 79        |
| 82 | Dual Effects of Extracellular Adherence Protein fromStaphylococcus aureuson Peripheral Blood<br>Mononuclear Cells. Journal of Infectious Diseases, 2005, 192, 210-217.                                                                                                             | 4.0  | 15        |
| 83 | Successful management of severe group A streptococcal soft tissue infections using an aggressive medical regimen including intravenous polyspecific immunoglobulin together with a conservative surgical approach. Scandinavian Journal of Infectious Diseases, 2005, 37, 166-172. | 1.5  | 156       |
| 84 | Differences in Potency of Intravenous Polyspecific Immunoglobulin G against Streptococcal and<br>Staphylococcal Superantigens: Implications for Therapy of Toxic Shock Syndrome. Clinical Infectious<br>Diseases, 2004, 38, 836-842.                                               | 5.8  | 144       |
| 85 | Staphylococcal protein A inflames the lungs. Nature Medicine, 2004, 10, 780-781.                                                                                                                                                                                                   | 30.7 | 3         |
| 86 | M Protein, a Classical Bacterial Virulence Determinant, Forms Complexes with Fibrinogen that Induce<br>Vascular Leakage. Cell, 2004, 116, 367-379.                                                                                                                                 | 28.9 | 316       |
| 87 | The treatment of severe group a streptococcal infections. Current Infectious Disease Reports, 2003, 5, 28-37.                                                                                                                                                                      | 3.0  | 17        |
| 88 | Intravenous Immunoglobulin G Therapy in Streptococcal Toxic Shock Syndrome: A European<br>Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Infectious Diseases, 2003, 37, 333-340.                                                                                     | 5.8  | 485       |
| 89 | Intravenous Immunoglobulin Adjunctive Therapy in Sepsis, with Special Emphasis on Severe Invasive<br>Group A Streptococcal Infections. Scandinavian Journal of Infectious Diseases, 2003, 35, 683-689.                                                                             | 1.5  | 85        |
| 90 | Extracellular Adherence Protein from Staphylococcus aureus Enhances Internalization into Eukaryotic Cells. Infection and Immunity, 2003, 71, 2310-2317.                                                                                                                            | 2.2  | 97        |

Anna Norrby-Teglund

| #   | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 2002, 8, 1398-1404.                                                                                                                             | 30.7 | 339       |
| 92  | Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles.<br>European Journal of Immunology, 2002, 32, 2570-2577.                                                                                                                     | 2.9  | 57        |
| 93  | Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles. ,<br>2002, 32, 2570.                                                                                                                                                        |      | 1         |
| 94  | An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 2002, 8, 1398-1404.                                                                                                                             | 30.7 | 167       |
| 95  | Reciprocal, Temporal Expression of SpeA and SpeB by Invasive M1T1 Group A Streptococcal Isolates In Vivo. Infection and Immunity, 2001, 69, 4988-4995.                                                                                                                          | 2.2  | 83        |
| 96  | Evidence for Superantigen Involvement in Severe Group A Streptococcal Tissue Infections. Journal of Infectious Diseases, 2001, 184, 853-860.                                                                                                                                    | 4.0  | 112       |
| 97  | Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. European Journal of Immunology, 2000, 30, 3247-3255.                                                                                                  | 2.9  | 115       |
| 98  | Genetic Relatedness and Superantigen Expression in Group A Streptococcus Serotype M1 Isolates from Patients with Severe and Nonsevere Invasive Diseases. Infection and Immunity, 2000, 68, 3523-3534.                                                                           | 2.2  | 252       |
| 99  | Inverse Relation between Disease Severity and Expression of the Streptococcal Cysteine Protease,<br>SpeB, among Clonal M1T1 Isolates Recovered from Invasive Group A Streptococcal Infection Cases.<br>Infection and Immunity, 2000, 68, 6362-6369.                             | 2.2  | 15        |
| 100 | Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: Role of Protective<br>Humoral Immunity. Infection and Immunity, 1999, 67, 1871-1877.                                                                                                             | 2.2  | 127       |
| 101 | Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: Role of Protective<br>Humoral Immunity. Infection and Immunity, 1999, 67, 1871-1877.                                                                                                             | 2.2  | 20        |
| 102 | Novel therapies in streptococcal toxic shock syndrome. Current Opinion in Infectious Diseases, 1998, 11, 285-292.                                                                                                                                                               | 3.1  | 22        |
| 103 | Opsonic Antibodies to the Surface M Protein of Group A Streptococci in Pooled Normal<br>Immunoglobulins (IVIG): Potential Impact on the Clinical Efficacy of IVIG Therapy for Severe Invasive<br>Group A Streptococcal Infections. Infection and Immunity, 1998, 66, 2279-2283. | 2.2  | 51        |
| 104 | Correlation between Serum TNFα and IL6 levels and Severity of Group: A Streptococcal Infections.<br>Scandinavian Journal of Infectious Diseases, 1995, 27, 125-130.                                                                                                             | 1.5  | 68        |
| 105 | Intravenous Immunoglobulin Therapy in Superantigen-Mediated Toxic Shock Syndrome. , 0, , 195-215.                                                                                                                                                                               |      | 2         |