Anna Norrby-Teglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2094239/publications.pdf

Version: 2024-02-01

105 papers 8,763 citations

57758 44 h-index 90 g-index

108 all docs

108 docs citations

108 times ranked

12064 citing authors

#	Article	IF	CITATIONS
1	Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell, 2020, 183, 158-168.e14.	28.9	1,561
2	Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood, 2008, 111, 3070-3080.	1.4	491
3	Intravenous Immunoglobulin G Therapy in Streptococcal Toxic Shock Syndrome: A European Randomized, Double-Blind, Placebo-Controlled Trial. Clinical Infectious Diseases, 2003, 37, 333-340.	5.8	485
4	Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock*. Critical Care Medicine, 2005, 33, 564-573.	0.9	399
5	An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 2002, 8, 1398-1404.	30.7	339
6	M Protein, a Classical Bacterial Virulence Determinant, Forms Complexes with Fibrinogen that Induce Vascular Leakage. Cell, 2004, 116, 367-379.	28.9	316
7	Genetic Relatedness and Superantigen Expression in Group A Streptococcus Serotype M1 Isolates from Patients with Severe and Nonsevere Invasive Diseases. Infection and Immunity, 2000, 68, 3523-3534.	2.2	252
8	Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood, 2017, 129, 1991-2001.	1.4	227
9	Clinical Efficacy of Polyspecific Intravenous Immunoglobulin Therapy in Patients With Streptococcal Toxic Shock Syndrome: A Comparative Observational Study. Clinical Infectious Diseases, 2014, 59, 851-857.	5 . 8	186
10	An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nature Medicine, 2002, 8, 1398-1404.	30.7	167
11	Molecular and Clinical Characteristics of Invasive Group A Streptococcal Infection in Sweden. Clinical Infectious Diseases, 2007, 45, 450-458.	5 . 8	158
12	Successful management of severe group A streptococcal soft tissue infections using an aggressive medical regimen including intravenous polyspecific immunoglobulin together with a conservative surgical approach. Scandinavian Journal of Infectious Diseases, 2005, 37, 166-172.	1.5	156
13	MAIT cell activation and dynamics associated with COVID-19 disease severity. Science Immunology, 2020, 5, .	11.9	147
14	Differences in Potency of Intravenous Polyspecific Immunoglobulin G against Streptococcal and Staphylococcal Superantigens: Implications for Therapy of Toxic Shock Syndrome. Clinical Infectious Diseases, 2004, 38, 836-842.	5.8	144
15	Streptococcal M Protein: A Multipotent and Powerful Inducer of Inflammation. Journal of Immunology, 2006, 177, 1221-1228.	0.8	132
16	Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis. BMC Medicine, 2017, 15, 172.	5 . 5	132
17	Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: Role of Protective Humoral Immunity. Infection and Immunity, 1999, 67, 1871-1877.	2.2	127
18	Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection. PLoS Medicine, 2006, 3, e53.	8.4	126

#	Article	IF	Citations
19	Getting under the Skin: The Immunopathogenesis of <i>Streptococcus pyogenes </i> Deep Tissue Infections. Clinical Infectious Diseases, 2010, 51, 58-65.	5.8	125
20	Pronounced elevation of resistin correlates with severity of disease in severe sepsis and septic shock. Critical Care Medicine, 2007, 35, 1536-1542.	0.9	120
21	Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. European Journal of Immunology, 2000, 30, 3247-3255.	2.9	115
22	Evidence for Superantigen Involvement in Severe Group A Streptococcal Tissue Infections. Journal of Infectious Diseases, 2001, 184, 853-860.	4.0	112
23	Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic Shock Syndrome: A Systematic Review and Meta-analysis. Clinical Infectious Diseases, 2018, 67, 1434-1436.	5.8	104
24	Major alterations in the mononuclear phagocyte landscape associated with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	104
25	Extracellular Adherence Protein from Staphylococcus aureus Enhances Internalization into Eukaryotic Cells. Infection and Immunity, 2003, 71, 2310-2317.	2.2	97
26	Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Medicine, 2017, 43, 1585-1593.	8.2	86
27	Intravenous Immunoglobulin Adjunctive Therapy in Sepsis, with Special Emphasis on Severe Invasive Group A Streptococcal Infections. Scandinavian Journal of Infectious Diseases, 2003, 35, 683-689.	1.5	85
28	Reciprocal, Temporal Expression of SpeA and SpeB by Invasive M1T1 Group A Streptococcal Isolates In Vivo. Infection and Immunity, 2001, 69, 4988-4995.	2.2	83
29	Patient's characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Medicine, 2019, 45, 1241-1251.	8.2	82
30	Variations in emm Type among Group A Streptococcal Isolates Causing Invasive or Noninvasive Infections in a Nationwide Study. Journal of Clinical Microbiology, 2005, 43, 3101-3109.	3.9	79
31	Cathelicidin LL-37 in Severe <i>Streptococcus pyogenes</i> Soft Tissue Infections in Humans. Infection and Immunity, 2008, 76, 3399-3404.	2.2	79
32	Fever in the Emergency Department Predicts Survival of Patients With Severe Sepsis and Septic Shock Admitted to the ICU*. Critical Care Medicine, 2017, 45, 591-599.	0.9	79
33	Intravenous polyclonal IgM-enriched immunoglobulin therapy in sepsis: a review of clinical efficacy in relation to microbiological aetiology and severity of sepsis. Journal of Internal Medicine, 2006, 260, 509-516.	6.0	77
34	Severe streptococcal infection is associated with M proteinâ€induced platelet activation and thrombus formation. Molecular Microbiology, 2007, 65, 1147-1157.	2.5	74
35	Correlation between Serum TNF \hat{l}_{\pm} and IL6 levels and Severity of Group: A Streptococcal Infections. Scandinavian Journal of Infectious Diseases, 1995, 27, 125-130.	1.5	68
36	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study. Clinical Infectious Diseases, 2021, 72, 293-300.	5.8	61

#	Article	IF	Citations
37	Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight, 2016, 1, e87882.	5.0	61
38	Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles. European Journal of Immunology, 2002, 32, 2570-2577.	2.9	57
39	The role of high mobility group box-1 protein in severe sepsis. Current Opinion in Infectious Diseases, 2006, 19, 231-236.	3.1	57
40	Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo. PLoS Pathogens, 2015, 11, e1005319.	4.7	54
41	High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	52
42	M1 Protein-Dependent Intracellular Trafficking Promotes Persistence and Replication of & lt;i>Streptococcus pyogenes in Macrophages. Journal of Innate Immunity, 2010, 2, 534-545.	3.8	51
43	Opsonic Antibodies to the Surface M Protein of Group A Streptococci in Pooled Normal Immunoglobulins (IVIG): Potential Impact on the Clinical Efficacy of IVIG Therapy for Severe Invasive Group A Streptococcal Infections. Infection and Immunity, 1998, 66, 2279-2283.	2.2	51
44	Neutrophil-Derived Hyperresistinemia in Severe Acute Streptococcal Infections. Journal of Immunology, 2009, 183, 4047-4054.	0.8	49
45	Bacterial Phenotype Variants in Group B Streptococcal Toxic Shock Syndrome 1. Emerging Infectious Diseases, 2009, 15, 223-232.	4.3	48
46	Modeling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. DMM Disease Models and Mechanisms, 2015, 8, 1413-25.	2.4	47
47	MAIT Cells Are Major Contributors to the Cytokine Response in Group A Streptococcal Toxic Shock Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25923-25931.	7.1	45
48	Association between cytokine response, the LRINEC score and outcome in patients with necrotising soft tissue infection: a multicentre, prospective study. Scientific Reports, 2017, 7, 42179.	3.3	44
49	Soluble M1 protein of Streptococcus pyogenes triggers potent T cell activation. Cellular Microbiology, 2007, 10, 070928215112001-???.	2.1	43
50	The Hypervariable Region of Streptococcus pyogenes M Protein Escapes Antibody Attack by Antigenic Variation and Weak Immunogenicity. Cell Host and Microbe, 2011, 10, 147-157.	11.0	43
51	Inducible Cyclooxygenase Released Prostaglandin E2Modulates the Severity of Infection Caused byStreptococcuspyogenes. Journal of Immunology, 2010, 185, 2372-2381.	0.8	42
52	Antibodies against a Surface Protein of Streptococcus pyogenes Promote a Pathological Inflammatory Response. PLoS Pathogens, 2008, 4, e1000149.	4.7	36
53	Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections. Scientific Reports, 2015, 5, 16945.	3.3	36
54	Protein C Inhibitor—A Novel Antimicrobial Agent. PLoS Pathogens, 2009, 5, e1000698.	4.7	34

#	Article	IF	Citations
55	Intracellular Streptococcus pyogenes in Human Macrophages Display an Altered Gene Expression Profile. PLoS ONE, 2012, 7, e35218.	2.5	33
56	HMGB1 in severe soft tissue infections caused by Streptococcus pyogenes. Frontiers in Cellular and Infection Microbiology, 2014, 4, 4.	3.9	32
57	Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse. PLoS Pathogens, 2016, 12, e1005732.	4.7	32
58	A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Scientific Reports, 2016, 6, 31360.	3.3	32
59	Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release. Scientific Reports, 2016, 6, 21288.	3.3	32
60	Erysipelas Caused by Group A Streptococcus Activates the Contact System and Induces the Release of Heparin-Binding Protein. Journal of Investigative Dermatology, 2010, 130, 1365-1372.	0.7	31
61	LL-37 Triggers Formation of <i>Streptococcus pyogenes</i> Extracellular Vesicle-Like Structures with Immune Stimulatory Properties. Journal of Innate Immunity, 2016, 8, 243-257.	3.8	29
62	CD46 Contributes to the Severity of Group A Streptococcal Infection. Infection and Immunity, 2008, 76, 3951-3958.	2.2	28
63	Genome Sequencing Unveils a Novel Sea Enterotoxin-Carrying PVL Phage in Staphylococcus aureus ST772 from India. PLoS ONE, 2013, 8, e60013.	2.5	27
64	Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nature Communications, 2019, 10, 3846.	12.8	25
65	Prognostic Value and Therapeutic Potential of TREM-1 in <i>Streptococcus pyogenes-</i> Induced Sepsis. Journal of Innate Immunity, 2013, 5, 581-590.	3.8	24
66	Novel therapies in streptococcal toxic shock syndrome. Current Opinion in Infectious Diseases, 1998, 11, 285-292.	3.1	22
67	Bacterial deception of MAIT cells in a cloud of superantigen and cytokines. PLoS Biology, 2017, 15, e2003167.	5.6	22
68	Clinical and Microbiologic Characteristics of Invasive Streptococcus pyogenes Infections in North and South India. Journal of Clinical Microbiology, 2012, 50, 1626-1631.	3.9	21
69	Levels of Alpha-Toxin Correlate with Distinct Phenotypic Response Profiles of Blood Mononuclear Cells and with agr Background of Community-Associated Staphylococcus aureus Isolates. PLoS ONE, 2014, 9, e106107.	2.5	20
70	Risk Factors in the Pathogenesis of Invasive Group A Streptococcal Infections: Role of Protective Humoral Immunity. Infection and Immunity, 1999, 67, 1871-1877.	2.2	20
71	Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal Superantigens in Patients With Necrotizing Soft Tissue Infections. Clinical Infectious Diseases, 2020, 71, 1772-1775.	5.8	18
72	The treatment of severe group a streptococcal infections. Current Infectious Disease Reports, 2003, 5, 28-37.	3.0	17

#	Article	IF	CITATIONS
73	Short- and Long-Term Mortality in Severe Sepsis/Septic Shock in a Setting with Low Antibiotic Resistance: A Prospective Observational Study in a Swedish University Hospital. Frontiers in Public Health, 2013, 1, 51.	2.7	17
74	Integrated Univariate, Multivariate, and Correlation-Based Network Analyses Reveal Metabolite-Specific Effects on Bacterial Growth and Biofilm Formation in Necrotizing Soft Tissue Infections. Journal of Proteome Research, 2020, 19, 688-698.	3.7	16
75	Dual Effects of Extracellular Adherence Protein fromStaphylococcus aureuson Peripheral Blood Mononuclear Cells. Journal of Infectious Diseases, 2005, 192, 210-217.	4.0	15
76	Severe group A streptococcal infections in Uppsala County, Sweden: Clinical and molecular characterization of a case cluster from 2006 to 2007. Scandinavian Journal of Infectious Diseases, 2009, 41, 823-830.	1.5	15
77	Inverse Relation between Disease Severity and Expression of the Streptococcal Cysteine Protease, SpeB, among Clonal M1T1 Isolates Recovered from Invasive Group A Streptococcal Infection Cases. Infection and Immunity, 2000, 68, 6362-6369.	2.2	15
78	Protein SIC Secreted from Streptococcus pyogenes Forms Complexes with Extracellular Histones That Boost Cytokine Production. Frontiers in Immunology, 2018, 9, 236.	4.8	14
79	Sequence variability is correlated with weak immunogenicity in <i>Streptococcus pyogenes</i> Mâprotein. MicrobiologyOpen, 2015, 4, 774-789.	3.0	13
80	High HMGB1 levels in sputum are related to pneumococcal bacteraemia but not to disease severity in community-acquired pneumonia. Scientific Reports, 2018, 8, 13428.	3.3	13
81	Streptococcus agalactiae in Relapsing Cellulitis. Clinical Infectious Diseases, 2007, 44, 1141-1142.	5.8	12
82	Prothrombotic and Proinflammatory Activities of the \hat{l}^2 -Hemolytic Group B Streptococcal Pigment. Journal of Innate Immunity, 2020, 12, 291-303.	3.8	12
83	Immunoregulation of Neutrophil Extracellular Trap Formation by Endothelial-Derived p33 (gC1q) Tj ETQq1 1 0.7	7843 <u>14</u> rgE	BT /Overlock 1
84	Group A Streptococcal DNase Sda1 Impairs Plasmacytoid Dendritic Cells' Type 1 InterferonÂResponse. Journal of Investigative Dermatology, 2019, 139, 1284-1293.	0.7	11
85	Release of SpeA from Streptococcus pyogenes after exposure to penicillin: Dependency on dose and inhibition by clindamycin. Scandinavian Journal of Infectious Diseases, 2006, 38, 983-987.	1.5	10
86	Pathogenic Mechanisms of Streptococcal Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 127-150.	1.6	10
87	Reduced iNOS expression in adenoids from children with otitis media with effusion. Pediatric Allergy and Immunology, 2010, 21, 1151-1156.	2.6	8
88	Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. Journal of Infectious Diseases, 2019, 220, 710-719.	4.0	8
89	Beyond the traditional immune response: bacterial interaction with phagocytic cells. International Journal of Antimicrobial Agents, 2013, 42, S13-S16.	2.5	7
90	Discriminatory plasma biomarkers predict specific clinical phenotypes of necrotizing soft-tissue infections. Journal of Clinical Investigation, 2021, 131, .	8.2	7

#	Article	lF	CITATIONS
91	COVIDâ€19â€specific metabolic imprint yields insights into multiorgan system perturbations. European Journal of Immunology, 2022, 52, 503-510.	2.9	7
92	Treatment of Necrotizing Soft Tissue Infections: IVIG. Advances in Experimental Medicine and Biology, 2020, 1294, 105-125.	1.6	4
93	The Karolinska <scp>Kl</scp> /K <scp>COVID</scp> â€19 immune atlas: An open resource for immunological research and educational purposes. Scandinavian Journal of Immunology, 2022, 96, .	2.7	4
94	Staphylococcal protein A inflames the lungs. Nature Medicine, 2004, 10, 780-781.	30.7	3
95	Shocking superantigens promote establishment of bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10000-10002.	7.1	3
96	Is It Time to Reconsider the Group A Streptococcal Rheumatogenic Concept?. Clinical Infectious Diseases, 2019, 70, 1461-1462.	5.8	3
97	Analysis of host-pathogen gene association networks reveals patient-specific response to streptococcal and polymicrobial necrotising soft tissue infections. BMC Medicine, 2022, 20, 173.	5.5	3
98	Intravenous Immunoglobulin Therapy in Superantigen-Mediated Toxic Shock Syndrome., 0,, 195-215.		2
99	Mucosa-Associated Invariant T Cell Hypersensitivity to Staphylococcus aureus Leukocidin ED and Its Modulation by Activation. Journal of Immunology, 2022, , ji2100912.	0.8	2
100	Consistent Biofilm Formation by Streptococcus pyogenes emm 1 Isolated From Patients With Necrotizing Soft Tissue Infections. Frontiers in Microbiology, 2022, 13, 822243.	3.5	2
101	Adjunctive Rifampicin Increases Antibiotic Efficacy in Group A Streptococcal Tissue Infection Models. Antimicrobial Agents and Chemotherapy, 2021, 65, e0065821.	3.2	1
102	Differential presentation of group A streptococcal superantigens by HLA class II DQ and DR alleles. , 2002, 32, 2570.		1
103	Reply to Arends and Harkisoen. Clinical Infectious Diseases, 2015, 60, 324-325.	5.8	0
104	In tribute to Singh Chhatwal. Environmental Microbiology Reports, 2016, 8, 555-555.	2.4	0
105	The INFECT-Project: An International and Multidisciplinary Project on Necrotizing Soft Tissue Infections. Advances in Experimental Medicine and Biology, 2020, 1294, 1-6.	1.6	0