Shuk-Mei Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2093057/publications.pdf

Version: 2024-02-01

				22153	2	4258
178		13,189		59		110
papers		citations		h-index		g-index
	_					
180		180		180		14588
		docs citations		times ranked		citing authors
						C
		papers 180	papers citations 180 180	178 13,189 papers citations 180 180	papers citations h-index 180 180 180	178 13,189 59 papers citations h-index 180 180 180

#	Article	IF	CITATIONS
1	Developmental Exposure to Estradiol and Bisphenol A Increases Susceptibility to Prostate Carcinogenesis and Epigenetically Regulates Phosphodiesterase Type 4 Variant 4. Cancer Research, 2006, 66, 5624-5632.	0.9	733
2	Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertility and Sterility, 2008, 90, 911-940.	1.0	379
3	Comparative Studies of the Estrogen Receptors \hat{I}^2 and $\hat{I}\pm$ and the Androgen Receptor in Normal Human Prostate Glands, Dysplasia, and in Primary and Metastatic Carcinoma. American Journal of Pathology, 2001, 159, 79-92.	3.8	377
4	Relation of DNA Methylation of 5′-CpG Island of ACSL3 to Transplacental Exposure to Airborne Polycyclic Aromatic Hydrocarbons and Childhood Asthma. PLoS ONE, 2009, 4, e4488.	2.5	345
5	A review of the carcinogenic potential of bisphenol A. Reproductive Toxicology, 2016, 59, 167-182.	2.9	336
6	Estrogen receptor (ER)-beta isoforms: A key to understanding ER-beta signaling. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13162-13167.	7.1	333
7	Environmental Epigenetics and Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 567-573.	5.6	269
8	Developmental Neurotoxicants in E-Waste: An Emerging Health Concern. Environmental Health Perspectives, 2011, 119, 431-438.	6.0	269
9	Why Public Health Agencies Cannot Depend on Good Laboratory Practices as a Criterion for Selecting Data: The Case of Bisphenol A. Environmental Health Perspectives, 2009, 117, 309-315.	6.0	268
10	An evaluation of evidence for the carcinogenic activity of bisphenol A. Reproductive Toxicology, 2007, 24, 240-252.	2.9	249
11	Summary of the National Toxicology Program's report of the endocrine disruptors low-dose peer review Environmental Health Perspectives, 2002, 110, 427-431.	6.0	240
12	Epigenetics meets endocrinology. Journal of Molecular Endocrinology, 2011, 46, R11-R32.	2.5	219
13	Estrogen, progesterone and epithelial ovarian cancer. Reproductive Biology and Endocrinology, 2003, 1, 73.	3. 3	211
14	Epigenetic reprogramming and imprinting in origins of disease. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 173-182.	5.7	208
15	Developmental estrogen exposures predispose to prostate carcinogenesis with agingâ [†] t. Reproductive Toxicology, 2007, 23, 374-382.	2.9	206
16	Environmental Epigenetics and Its Implication on Disease Risk and Health Outcomes. ILAR Journal, 2012, 53, 289-305.	1.8	201
17	Dynamic Regulation of Estrogen Receptor-β Expression by DNA Methylation During Prostate Cancer Development and Metastasis. American Journal of Pathology, 2004, 164, 2003-2012.	3.8	197
18	Environmental epigenetics of asthma: An update. Journal of Allergy and Clinical Immunology, 2010, 126, 453-465.	2.9	192

#	Article	IF	CITATIONS
19	Estrogens and anti-estrogens: Key mediators of prostate carcinogenesis and new therapeutic candidates. Journal of Cellular Biochemistry, 2004, 91, 491-503.	2.6	176
20	Persistent Hypomethylation in the Promoter of Nucleosomal Binding Protein 1 (Nsbp1) Correlates with Overexpression of Nsbp1 in Mouse Uteri Neonatally Exposed to Diethylstilbestrol or Genistein. Endocrinology, 2008, 149, 5922-5931.	2.8	163
21	Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reproductive Toxicology, 2017, 68, 85-104.	2.9	161
22	Androgenic Regulation of Oxidative Stress in the Rat Prostate. American Journal of Pathology, 2003, 163, 2513-2522.	3.8	158
23	Human \hat{I}^2 -Defensin-1, a Potential Chromosome 8p Tumor Suppressor: Control of Transcription and Induction of Apoptosis in Renal Cell Carcinoma. Cancer Research, 2006, 66, 8542-8549.	0.9	157
24	Environmental Estrogens Differentially Engage the Histone Methyltransferase EZH2 to Increase Risk of Uterine Tumorigenesis. Molecular Cancer Research, 2012, 10, 546-557.	3.4	151
25	Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Developmental Biology, 1984, 102, 452-461.	2.0	145
26	Bisphenol A Promotes Human Prostate Stem-Progenitor Cell Self-Renewal and Increases In Vivo Carcinogenesis in Human Prostate Epithelium. Endocrinology, 2014, 155, 805-817.	2.8	144
27	Neonatal Exposure to Estradiol/Bisphenol A Alters Promoter Methylation and Expression of Nsbp1 and Hpcal1 Genes and Transcriptional Programs of Dnmt3a/b and Mbd2/4 in the RatProstate Gland Throughout Life. Endocrinology, 2012, 153, 42-55.	2.8	143
28	Maternal Exposure to Polycyclic Aromatic Hydrocarbons and 5'-CpG Methylation of Interferon-γ in Cord White Blood Cells. Environmental Health Perspectives, 2012, 120, 1195-1200.	6.0	138
29	Developmental reprogramming of cancer susceptibility. Nature Reviews Cancer, 2012, 12, 479-486.	28.4	133
30	Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague–Dawley rats. Reproductive Toxicology, 2011, 31, 1-9.	2.9	130
31	Estrogen receptor \hat{l}^2 2 and \hat{l}^2 5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocrine-Related Cancer, 2010, 17, 675-689.	3.1	125
32	Apigenin Suppresses Cancer Cell Growth through ERÎ ² . Neoplasia, 2006, 8, 896-904.	5.3	124
33	Androgenâ€supported estrogenâ€enhanced epithelial proliferation in the prostates of intact noble rats. Prostate, 1989, 15, 23-40.	2.3	123
34	Histone Deacetylase 9 Is a Negative Regulator of Adipogenic Differentiation. Journal of Biological Chemistry, 2011, 286, 27836-27847.	3.4	120
35	Reproductive Hormone-Induced, STAT3-Mediated Interleukin 6 Action in Normal and Malignant Human Ovarian Surface Epithelial Cells. Journal of the National Cancer Institute, 2002, 94, 617-629.	6.3	117
36	The Endocrinology of Prostate Cancer. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3467-3477.	3.6	108

#	Article	IF	CITATIONS
37	Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene, 2005, 24, 1774-1787.	5.9	104
38	Estrogen-Initiated Transformation of Prostate Epithelium Derived from Normal Human Prostate Stem-Progenitor Cells. Endocrinology, 2011, 152, 2150-2163.	2.8	99
39	Ambient Air Heavy Metals in PM2.5 and Potential Human Health Risk Assessment in an Informal Electronic-Waste Recycling Site of China. Aerosol and Air Quality Research, 2016, 16, 388-397.	2.1	96
40	Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China. Environmental Science and Pollution Research, 2016, 23, 17511-17524.	5. 3	95
41	Rat Estrogen Receptor- \hat{l} ± and $\hat{-l}$ 2, and Progesterone Receptor mRNA Expression in Various Prostatic Lobes and Microdissected Normal and Dysplastic Epithelial Tissues of the Noble Rats. Endocrinology, 1998, 139, 424-427.	2.8	92
42	Exposure to Bisphenol A Correlates with Early-Onset Prostate Cancer and Promotes Centrosome Amplification and Anchorage-Independent Growth In Vitro. PLoS ONE, 2014, 9, e90332.	2.5	92
43	Endocrine disruption of the epigenome: a breast cancer link. Endocrine-Related Cancer, 2014, 21, T33-T55.	3.1	88
44	Ribosomeâ€inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylaseâ€1 selectively in premalignant and malignant prostate cancer cells. International Journal of Cancer, 2009, 125, 774-782.	5.1	87
45	Prolactin Receptor Expression in the Developing Human Prostate and in Hyperplastic, Dysplastic, and Neoplastic Lesions. American Journal of Pathology, 1999, 154, 863-870.	3.8	86
46	Expression of Androgen Receptor Is Negatively Regulated By p53. Neoplasia, 2007, 9, 1152-1159.	5. 3	85
47	Effect of exogenous estradiol- $17\hat{l}^2$ on plasma vitellogenin levels in male and female Chrysemys and its modulation by testosterone and progesterone. General and Comparative Endocrinology, 1981, 43, 413-421.	1.8	84
48	Expression of estrogen receptor beta in the fetal, neonatal, and prepubertal human prostate. Prostate, 2002, 52, 69-81.	2.3	82
49	Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: An emphasis on fetal-based adult diseases. Reproductive Toxicology, 2007, 23, 267-282.	2.9	82
50	Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: epigenetic mode of action is implicated. Fertility and Sterility, 2008, 89, e41.	1.0	78
51	Comprehensive Identification and Modified-Site Mapping of S-Nitrosylated Targets in Prostate Epithelial Cells. PLoS ONE, 2010, 5, e9075.	2.5	75
52	Progesterone-induced apoptosis in immortalized normal and malignant human ovarian surface epithelial cells involves enhanced expression of FasL. Oncogene, 2003, 22, 6883-6890.	5.9	73
53	Metastases of prostate cancer express estrogen receptor-beta. Urology, 2004, 64, 814-820.	1.0	73
54	Prostate Cancer Risk and DNA Methylation Signatures in Aging Rats following Developmental BPA Exposure: A Dose–Response Analysis. Environmental Health Perspectives, 2017, 125, 077007.	6.0	70

#	Article	IF	Citations
55	Mutually Positive Regulatory Feedback Loop between Interferons and Estrogen Receptor-α in Mice: Implications for Sex Bias in Autoimmunity. PLoS ONE, 2010, 5, e10868.	2.5	68
56	Reprogramming of the Epigenome by MLL1 Links Early-Life Environmental Exposures to Prostate Cancer Risk. Molecular Endocrinology, 2016, 30, 856-871.	3.7	68
57	Sex-specific regulation of collagen I and III expression by $17\hat{l}^2$ -Estradiol in cardiac fibroblasts: role of estrogen receptors. Cardiovascular Research, 2019, 115, 315-327.	3.8	68
58	Hydroxylated Polybrominated Diphenyl Ethers in Paired Maternal and Cord Sera. Environmental Science & Environmental Environmenta	10.0	66
59	Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics, 2018, 13, 290-300.	2.7	62
60	DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk. Epigenetics, 2016, 11, 674-689.	2.7	59
61	Methylation of a single intronic CpG mediates expression silencing of the <i>PMP24</i> gene in prostate cancer. Prostate, 2010, 70, 765-776.	2.3	58
62	Application of Phi29 Motor pRNA for Targeted Therapeutic Delivery of siRNA Silencing Metallothionein-IIA and Survivin in Ovarian Cancers. Molecular Therapy, 2011, 19, 386-394.	8.2	56
63	Identification of Secretaglobin <i>Scgb2a1</i> as a target for developmental reprogramming by BPA in the rat prostate. Epigenetics, 2015, 10, 127-134.	2.7	53
64	Sex hormone-induced nuclear DNA damage and lipid peroxidation in the dorsolaterel prostates of Noble rats. Cancer Letters, 1994, 84, 155-162.	7.2	52
65	Differential attenuation of oxidative/nitrosative injuries in early prostatic neoplastic lesions in TRAMP mice by dietary antioxidants. Prostate, 2006, 66, 57-69.	2.3	50
66	Effect of hypophysectomy and growth hormone on estrogen-induced vitellogenesis in the freshwater turtle, Chrysemys picta. General and Comparative Endocrinology, 1982, 48, 254-260.	1.8	49
67	Sex hormone-induced alterations in the activities of antioxidant enzymes and lipid peroxidation status in the prostate of noble rats. Prostate, 2003, 55, 1-8.	2.3	49
68	Overexpression of Cytochrome P450 1A1 and Its Novel Spliced Variant in Ovarian Cancer Cells: Alternative Subcellular Enzyme Compartmentation May Contribute to Carcinogenesis. Cancer Research, 2005, 65, 3726-3734.	0.9	49
69	Transcriptome Analyses in Normal Prostate Epithelial Cells Exposed to Low-Dose Cadmium: Oncogenic and Immunomodulations Involving the Action of Tumor Necrosis Factor. Environmental Health Perspectives, 2008, 116, 769-776.	6.0	48
70	Epigenetic Changes with Dietary Soy in Cynomolgus Monkeys. PLoS ONE, 2011, 6, e26791.	2.5	48
71	Estrogens and Antiestrogens as Etiological Factors and Therapeutics for Prostate Cancer. Annals of the New York Academy of Sciences, 2006, 1089, 177-193.	3.8	47
72	Estrogens and Prostate Cancer: Etiology, Mediators, Prevention, and Management. Endocrinology and Metabolism Clinics of North America, 2011, 40, 591-614.	3.2	47

#	Article	IF	CITATIONS
73	Bisphenol A (BPA) stimulates the interferon signaling and activates the inflammasome activity in myeloid cells. Molecular and Cellular Endocrinology, 2015, 415, 45-55.	3.2	47
74	Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reproductive Toxicology, 2018, 75, 49-55.	2.9	46
75	Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics, 2018, 13, 704-720.	2.7	46
76	Androgen Receptor Levels and Androgen Contents in the Prostate Lobes of Intact and Testosteroneâ€treated Noble Rats. Journal of Andrology, 1985, 6, 279-290.	2.0	45
77	Sex Hormones Induce Direct Epithelial and Inflammation-Mediated Oxidative/Nitrosative Stress That Favors Prostatic Carcinogenesis in the Noble Rat. American Journal of Pathology, 2007, 171, 1334-1341.	3.8	45
78	Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer. Endocrine-Related Cancer, 2014, 21, 903-914.	3.1	45
79	Exposure of Human Prostaspheres to Bisphenol A Epigenetically Regulates SNORD Family Noncoding RNAs via Histone Modification. Endocrinology, 2015, 156, 3984-3995.	2.8	45
80	Bisphenol A and its analogues disrupt centrosome cycle and microtubule dynamics in prostate cancer. Endocrine-Related Cancer, 2017, 24, 83-96.	3.1	44
81	The Endocrinology of Prostate Cancer. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 3467-3477.	3.6	44
82	Mass profiling-directed isolation and identification of a stage-specific serologic protein biomarker of advanced prostate cancer. Proteomics, 2005, 5, 2927-2938.	2.2	42
83	Impact of Oxidative Stress Biomarkers and Carboxymethyllysine (an Advanced Glycation End Product) on Prostate Cancer: A Prospective Study. Clinical Genitourinary Cancer, 2015, 13, e347-e351.	1.9	42
84	Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reproductive Toxicology, 2020, 98, 29-60.	2.9	42
85	Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines. Molecular Carcinogenesis, 2000, 28, 236-246.	2.7	41
86	Age-Related Changes in the Activities of Antioxidant Enzymes and Lipid Peroxidation Status in Ventral and Dorsolateral Prostate Lobes of Noble Rats. Biochemical and Biophysical Research Communications, 1996, 222, 362-367.	2.1	40
87	Progesterone induces Apoptosis in TRAIL-resistant ovarian cancer cells by circumventing c-FLIPL overexpression. Journal of Cellular Biochemistry, 2007, 102, 442-452.	2.6	39
88	Hypomethylation of Dual Specificity Phosphatase 22 Promoter Correlates With Duration of Service in Firefighters and Is Inducible by Low-Dose Benzo[a]Pyrene. Journal of Occupational and Environmental Medicine, 2012, 54, 774-780.	1.7	38
89	ICI 182,780-Regulated Gene Expression in DU145 Prostate Cancer Cells Is Mediated by Estrogen Receptor-β/NFκB Crosstalk. Neoplasia, 2006, 8, 242-249.	5.3	37
90	Estrogen receptor-beta expression in human testicular germ cell tumors. Clinical Cancer Research, 2003, 9, 4475-82.	7.0	37

#	Article	IF	Citations
91	Age-Associated Changes in Histology and Gene-Expression Profile in the Rat Ventral Prostate. Laboratory Investigation, 2003, 83, 743-757.	3.7	36
92	Unique Bisphenol A Transcriptome in Prostate Cancer: Novel Effects on ERβ Expression That Correspond to Androgen Receptor Mutation Status. Environmental Health Perspectives, 2007, 115, 1646-1653.	6.0	36
93	Hormonal Regulation and Distinct Functions of Semaphorin-3B and Semaphorin-3F in Ovarian Cancer. Molecular Cancer Therapeutics, 2010, 9, 499-509.	4.1	36
94	Hsa-miRNA-765 as a Key Mediator for Inhibiting Growth, Migration and Invasion in Fulvestrant-Treated Prostate Cancer. PLoS ONE, 2014, 9, e98037.	2.5	36
95	The Transcriptional Repressor ZBTB4 Regulates EZH2 Through a MicroRNA-ZBTB4-Specificity Protein Signaling Axis. Neoplasia, 2014, 16, 1059-1069.	5.3	36
96	Rat Estrogen Receptor-Â and -Â, and Progesterone Receptor mRNA Expression in Various Prostatic Lobes and Microdissected Normal and Dysplastic Epithelial Tissues of the Noble Rats. Endocrinology, 1998, 139, 424-427.	2.8	36
97	PMP24, a gene identified by MSRF, undergoes DNA hypermethylation-associated gene silencing during cancer progression in an LNCaP model. Oncogene, 2004, 23, 250-259.	5.9	35
98	Lack of Association between Enhanced TRPM-2/Clusterin Expression and Increased Apoptotic Activity in Sex-Hormone-Induced Prostatic Dysplasia of the Noble Rat. American Journal of Pathology, 1998, 153, 131-139.	3.8	34
99	Estrogen-induced loss of progesterone receptor expression in normal and malignant ovarian surface epithelial cells. Oncogene, 2005, 24, 4388-4400.	5.9	34
100	Interferon- \hat{I}^3 Promoter Is Hypermethylated in Blood DNA from Workers with Confirmed Diisocyanate Asthma. Toxicological Sciences, 2013, 133, 218-224.	3.1	34
101	Quantitative comparison and reproducibility of pathologist scoring and digital image analysis of estrogen receptor \hat{l}^22 immunohistochemistry in prostate cancer. Diagnostic Pathology, 2016, 11, 63.	2.0	34
102	Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene, 2003, 22, 4243-4256.	5.9	33
103	Profiling estrogen-regulated gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene, 2005, 24, 8128-8143.	5.9	33
104	Enhanced Resistance to Tamoxifen by the c-ABL Proto-oncogene in Breast Cancer. Neoplasia, 2010, 12, 214-IN3.	5.3	33
105	African Americans should be screened at an earlier age for colorectal cancer. Gastrointestinal Endoscopy, 2015, 82, 878-883.	1.0	33
106	Differential methylation values in differential methylation analysis. Bioinformatics, 2019, 35, 1094-1097.	4.1	33
107	Deletion Hotspots in AMACR Promoter CpG Island Are cis-Regulatory Elements Controlling the Gene Expression in the Colon. PLoS Genetics, 2009, 5, e1000334.	3.5	30
108	Metal concentrations in pregnant women and neonates from informal electronic waste recycling. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 406-415.	3.9	30

#	Article	IF	Citations
109	Identification of an estrogen receptor in the testis of the sea lamprey, Petromyzon marinus. General and Comparative Endocrinology, 1987, 67, 119-125.	1.8	28
110	Altered expression of extracellular matrix and proteinases in noble rat prostate gland after long-term treatment with sex steroids. Prostate, 2001, 49, 58-71.	2.3	28
111	Estrogen receptors in the turtle brain. Brain Research, 1982, 231, 63-74.	2.2	27
112	Effects of Cadmium on Metallothionein-I and Metallothionein-II mRNA Expression in Rat Ventral, Lateral, and Dorsal Prostatic Lobes: Quantification by Competitive RT–PCR. Toxicology and Applied Pharmacology, 1999, 154, 20-27.	2.8	27
113	Expression of RFG/ELE1?/ARA70 in normal and malignant prostatic epithelial cell cultures and lines: Regulation by methylation and sex steroids. Molecular Carcinogenesis, 2001, 30, 1-13.	2.7	27
114	Phosphorylation of human estrogen receptor-beta at serine 105 inhibits breast cancer cell migration and invasion. Molecular and Cellular Endocrinology, 2012, 358, 27-35.	3.2	27
115	Estrogen Receptor \hat{l}^2 Isoform 5 Confers Sensitivity of Breast Cancer Cell Lines to Chemotherapeutic Agent-Induced Apoptosis through Interaction with Bcl2L12. Neoplasia, 2013, 15, 1262-IN15.	5.3	27
116	oxBS-MLE: an efficient method to estimate 5-methylcytosine and 5-hydroxymethylcytosine in paired bisulfite and oxidative bisulfite treated DNA. Bioinformatics, 2016, 32, 3667-3669.	4.1	27
117	Expression and regulation of metallothionein mRNA levels in the prostates of Noble rats: Lack of expression in the ventral prostate and regulation by sex hormones in the dorsolateral prostate. , 1996, 29, 91-100.		26
118	In utero exposure of rats to high-fat diets perturbs gene expression profiles and cancer susceptibility of prepubertal mammary glands. Journal of Nutritional Biochemistry, 2016, 29, 73-82.	4.2	26
119	Differential expression of estrogen receptor beta isoforms in prostate cancer through interplay between transcriptional and translational regulation. Molecular and Cellular Endocrinology, 2013, 376, 125-135.	3.2	25
120	A novel Cas9-targeted long-read assay for simultaneous detection of IDH1/2 mutations and clinically relevant MGMT methylation in fresh biopsies of diffuse glioma. Acta Neuropathologica Communications, 2020, 8, 87.	5.2	24
121	Comparative study of glycoconjugates of the rat prostatic lobes by lectin histochemistry. , 1999, 38, 1-16.		23
122	Bisphenol A Disrupts HNF4α-Regulated Gene Networks Linking to Prostate Preneoplasia and Immune Disruption in Noble Rats. Endocrinology, 2016, 157, 207-219.	2.8	22
123	Some Properties of a Steroid-Binding Protein in the Plasma of an Ovoviviparous Dogfish, Squalus acanthias, at Different Stages of the Life Cycle1. Biology of Reproduction, 1980, 23, 281-289.	2.7	20
124	Involvement of transforming growth factor \hat{l}_{\pm} (TGF \hat{l}_{\pm}) and epidermal growth factor receptor (EGFR) in sex hormone-induced prostatic dysplasia and the growth of an androgen-independent transplantable carcinoma of the prostate. Carcinogenesis, 1996, 17, 2571-2579.	2.8	20
125	Estrogen Receptor \hat{I}^2 : Switching to a New Partner and Escaping from Estrogen. Science Signaling, 2011, 4, pe19.	3.6	18
126	High butter-fat diet and bisphenol A additively impair male rat spermatogenesis. Reproductive Toxicology, 2017, 68, 191-199.	2.9	18

#	Article	IF	Citations
127	Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Scientific Reports, 2017, 7, 10662.	3.3	17
128	Prostatic androgen receptor and plasma testosterone levels in streptozotocin-induced diabetic rats. Journal of Steroid Biochemistry and Molecular Biology, 1991, 38, 67-72.	2.5	16
129	Gene Expression Profiling of Testosterone and Estradiol-17Â-Induced Prostatic Dysplasia in Noble Rats and Response to the Antiestrogen ICI 182,780. Endocrinology, 2002, 143, 2093-2105.	2.8	16
130	Low-Dose Bisphenol A in a Rat Model of Endometrial Cancer: A CLARITY-BPA Study. Environmental Health Perspectives, 2020, 128, 127005.	6.0	15
131	Analysis of glycoconjugate patterns of normal and hormone-induced dysplastic Noble rat prostates, and an androgen-independent Noble rat prostate tumor, by lectin histochemistry and protein blotting. Prostate, 2001, 46, 21-32.	2.3	14
132	Research Resource: Estrogen-Driven Prolactin-Mediated Gene-Expression Networks in Hormone-Induced Prostatic Intraepithelial Neoplasia. Molecular Endocrinology, 2010, 24, 2207-2217.	3.7	14
133	NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries. FASEB Journal, 2019, 33, 8335-8348.	0.5	14
134	Gene Expression Profiling Identifies Lobe-Specific and Common Disruptions of Multiple Gene Networks in Testosterone-Supported, 17β-Estradiol- or Diethylstilbestrol-Induced Prostate Dysplasia in Noble Rats. Neoplasia, 2008, 10, 20-IN18.	5.3	13
135	Incorporating genetics and genomics in risk assessment for inhaled manganese: From data to policy. NeuroToxicology, 2009, 30, 754-760.	3.0	13
136	Deciphering gene expression program of MAP3K1 in mouse eyelid morphogenesis. Developmental Biology, 2013, 374, 96-107.	2.0	13
137	Prenatal and Postnatal Polycyclic Aromatic Hydrocarbon Exposure, Airway Hyperreactivity, and Beta-2 Adrenergic Receptor Function in Sensitized Mouse Offspring. Journal of Toxicology, 2013, 2013, 1-9.	3.0	13
138	The novel estrogen 17alpha-20Z-21-[(4-amino)phenyl]-19-norpregna-1,3,5(10),20-tetraene-3,17beta-diol induces apoptosis in prostate cancer cell lines at nanomolar concentrations in vitro. Molecular Cancer Therapeutics, 2004, 3, 587-95.	4.1	13
139	DNA microarrays in prostate cancer. Current Urology Reports, 2002, 3, 53-60.	2.2	12
140	Expression study of three secretory proteins (prostatic secretory protein of 94 amino acids, probasin,) Tj ETQq0	0 0 ₂ .gBT /0	Overlock 10 T
141	Differential proteomics in the aging Noble rat ventral prostate. Proteomics, 2008, 8, 2750-2763.	2.2	12
142	Estrogen Receptor \hat{I}^2 (ER \hat{I}^2 1) Transactivation Is Differentially Modulated by the Transcriptional Coregulator Tip60 in a cis-Acting Element-dependent Manner. Journal of Biological Chemistry, 2013, 288, 25038-25052.	3.4	12
143	Prostate Cancer Expression Profiles of Cytoplasmic $\mathrm{ER}\hat{l}^21$ and Nuclear $\mathrm{ER}\hat{l}^22$ are Associated with Poor Outcomes following Radical Prostatectomy. Journal of Urology, 2016, 195, 1760-1766.	0.4	12
144	Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants. Scientific Reports, 2017, 7, 2085.	3.3	12

#	Article	IF	CITATIONS
145	Genetic and epigenetic changes in the eutopic endometrium of women with endometriosis: association with decreased endometrial $\hat{l}\pm\hat{vl^2}$ 3 integrin expression. Molecular Human Reproduction, 2021, 27, .	2.8	12
146	Effect of combined testosterone and estradiol- $17\hat{l}^2$ treatment on the metabolism of E2 in the prostate and liver of noble rats., 1997, 30, 256-262.		11
147	Effects of High-Butterfat Diet on Embryo Implantation in Female Rats Exposed to Bisphenol A1. Biology of Reproduction, 2015, 93, 147.	2.7	11
148	Thyroid Hormone Status in Umbilical Cord Serum Is Positively Associated with Male Anogenital Distance. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3378-3385.	3.6	11
149	Ca ²⁺ Selective Host Rotaxane Is Highly Toxic Against Prostate Cancer Cells. ACS Medicinal Chemistry Letters, 2017, 8, 163-167.	2.8	11
150	High-affinity binding of by an estrogen receptor in the liver of the turtle. General and Comparative Endocrinology, 1988, 70, 382-394.	1.8	10
151	Hormonal regulation of nuclear type II estrogen binding sites in the dorsolateral prostate of Noble rats. Journal of Steroid Biochemistry and Molecular Biology, 1995, 52, 233-238.	2.5	10
152	Crown Ether Host-Rotaxanes as Cytotoxic Agents. ACS Medicinal Chemistry Letters, 2013, 4, 27-31.	2.8	10
153	Inhibition Role of Atherogenic Diet on Ethyl Carbamate Induced Lung Tumorigenesis in C57BL/6J Mice. Scientific Reports, 2017, 7, 4723.	3.3	10
154	Effects of hypophysectomy and ovariectomy on hepatic estrogen receptor content in the turtle, Chrysemys picta. General and Comparative Endocrinology, 1989, 75, 466-471.	1.8	9
155	Seasonal variation in hepatic binding of estrogen in the turtle, Chrysemys picta. General and Comparative Endocrinology, 1989, 75, 472-480.	1.8	9
156	Plasma Levels of Nitrate and Risk of Prostate Cancer: A Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1210-1218.	2.5	9
157	Effects of post-weaning diet on metabolic parameters and DNA methylation status of the cryptic promoter in the Avy allele of viable yellow mice. Journal of Nutritional Biochemistry, 2015, 26, 667-674.	4.2	9
158	In vitro and in vivo inhibition of nuclear type II estrogen binding sites in the dorsolateral prostate of noble rats. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 489-495.	2.5	8
159	Does epigenetic drift contribute to age-related increases in breast cancer risk?. Epigenomics, 2014, 6, 367-369.	2.1	8
160	Increased susceptibility of estrogen-induced bladder outlet obstruction in a novel mouse model. Laboratory Investigation, 2015, 95, 546-560.	3.7	8
161	Greater susceptibility of girls to airborne Benzo[a]pyrene for obesity-associated childhood asthma. Environment International, 2018, 121, 308-316.	10.0	8
162	Induction of progesterone receptor by androgens in the mouse uterus. Molecular and Cellular Endocrinology, 1986, 46, 103-108.	3.2	7

#	Article	IF	CITATIONS
163	A Comparative Study of Hormonal Regulation of Three Secretory Proteins (Prostatic Secretory) Tj ETQq1 1 0.7843 141, 4543-4551.	314 rgBT / 2.8	Overlock 10 7
164	Sex hormone-induction and dietary modulation of Prostatic Adenocarcinoma (PA) in animal models. Urologic Oncology: Seminars and Original Investigations, 1996, 2, 110-115.	1.6	6
165	Association between plasma fluorescent oxidation products and erectile dysfunction: A prospective study. BMC Urology, 2015, 15, 85.	1.4	6
166	Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells. PLoS ONE, 2020, 15, e0228894.	2.5	6
167	Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients, 2021, 13, 3636.	4.1	5
168	Generation and Characterization of Hammerhead Ribozymes Targeting Rodent Metallothionein-I and -II Ribonucleic Acid. Toxicology and Applied Pharmacology, 1999, 161, 294-301.	2.8	4
169	Data on spermatogenesis in rat males gestationally exposed to bisphenol A and high fat diets. Data in Brief, 2016, 9, 812-817.	1.0	4
170	A community survey on knowledge of the impact of environmental and epigenetic factors on health and disease. Perspectives in Public Health, 2016, 136, 345-352.	1.6	4
171	The androgen receptor inhibits transcription of GPER1 by preventing Sp1 and Sp3 from binding to the promoters in prostate cancer cells. Oncotarget, 2022, 13, 46-60.	1.8	3
172	Organoid model shows effect of BPA on prostate development. Nature Reviews Urology, 2015, 12, 658-659.	3.8	2
173	Androgen action series. Journal of Cellular Biochemistry, 2006, 99, 331-332.	2.6	O
174	Epigenetic Studies Should Focus on Specific Cell Types. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 883-883.	5. 6	0
175	Battle against the odds: win with effort, attitude, and perseverance!. Endocrine-Related Cancer, 2014, 21, P19-P24.	3.1	O
176	Untangling the Complex Interactions of Open Burn Pit Exposure and Health Outcomes. primary care companion for CNS disorders, The, 2021, 23, .	0.6	0
177	Epigenetic Memories: How Do They Interact with Life-Span Events? Shuk-mei Ho, Ph.D Biology of Reproduction, 2009, 81, 73-73.	2.7	O
178	Open Burn Pit Exposure and Concern About the COVID-19 Pandemic. primary care companion for CNS disorders, The, 2020, 22, .	0.6	0