Baijun Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2092811/publications.pdf

Version: 2024-02-01

58	2,531	27 h-index	49
papers	citations		g-index
62	62	62	3061 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Stratospheric Kelvin Wave Activity as a Function of Equivalent Depth in AIRS and Reanalysis Datasets. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
2	Estimating and Removing the Sampling Biases of the AIRS Obs4MIPs V2 Data. Earth and Space Science, 2020, 7, e2020EA001438.	2.6	6
3	The Doubleâ€ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation. Geophysical Research Letters, 2020, 47, e2020GL087232.	4.0	153
4	Assessing the Impacts of Two Averaging Methods on AIRS Level 3 Monthly Products and Multiyear Monthly Means. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1027-1050.	1.3	11
5	Climate Model Evaluation in the Presence of Observational Uncertainty: Precipitation Indices over the Contiguous United States. Journal of Hydrometeorology, 2019, 20, 1339-1357.	1.9	43
6	Interannual variations of water vapor in the tropical upper troposphere and the lower and middle stratosphere and their connections to ENSO and QBO. Atmospheric Chemistry and Physics, 2019, 19, 9913-9926.	4.9	16
7	The Atmospheric Infrared Sounder Obs4MIPs Version 2 Data Set. Earth and Space Science, 2019, 6, 324-333.	2.6	11
8	Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations. Climate Dynamics, 2018, 50, 231-248.	3.8	26
9	On the Emergent Constraints of Climate Sensitivity. Journal of Climate, 2018, 31, 863-875.	3.2	11
10	Development of a Model Performance Metric and Its Application to Assess Summer Precipitation over the U.S. Great Plains in Downscaled Climate Simulations. Journal of Hydrometeorology, 2017, 18, 2781-2799.	1.9	12
11	Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASAâ€Unified WRF. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7371-7384.	3.3	22
12	Sensitivity of CONUS Summer Rainfall to the Selection of Cumulus Parameterization Schemes in NU-WRF Seasonal Simulations. Journal of Hydrometeorology, 2017, 18, 1689-1706.	1.9	11
13	A Decade of Spaceborne Observations of the Arctic Atmosphere: Novel Insights from NASA's AIRS Instrument. Bulletin of the American Meteorological Society, 2016, 97, 2163-2176.	3.3	26
14	Spread of model climate sensitivity linked to doubleâ€Intertropical Convergence Zone bias. Geophysical Research Letters, 2015, 42, 4133-4141.	4.0	94
15	The effects of <scp>ENSO</scp> under negative <scp>AO</scp> phase on spring dust activity over northern China: an observational investigation. International Journal of Climatology, 2015, 35, 935-947.	3 . 5	21
16	Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic. Global and Planetary Change, 2015, 128, 61-71.	3.5	19
17	Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003–2013. Journal of Geophysical Research: Solid Earth, 2015, 120, 3617-3627.	3.4	25
18	Estimating sampling biases and measurement uncertainties of AIRS/AMSU-A temperature and water vapor observations using MERRA reanalysis. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2725-2741.	3.3	38

#	Article	IF	CITATIONS
19	Tropical Intraseasonal Modes of the Atmosphere. Annual Review of Environment and Resources, 2014, 39, 189-215.	13.4	29
20	Representation of tropical subseasonal variability of precipitation in global reanalyses. Climate Dynamics, 2014, 43, 517-534.	3.8	23
21	Northern Hemisphere midâ€winter vortexâ€displacement and vortexâ€split stratospheric sudden warmings: Influence of the Maddenâ€Julian Oscillation and Quasiâ€Biennial Oscillation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,599.	3.3	66
22	The Atmospheric Infrared Sounder version 6 cloud products. Atmospheric Chemistry and Physics, 2014, 14, 399-426.	4.9	99
23	The response of the equatorial tropospheric ozone to the Madden–Julian Oscillation in TES satellite observations and CAM-chem model simulation. Atmospheric Chemistry and Physics, 2014, 14, 11775-11790.	4.9	8
24	Madden-Julian Oscillation (MJO). Encyclopedia of Earth Sciences Series, 2014, , 349-358.	0.1	3
25	Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. Journal of Geophysical Research D: Atmospheres, 2013, 118, 114-134.	3.3	102
26	Tropical Atlantic dust and smoke aerosol variations related to the Maddenâ€Julian Oscillation in MODIS and MISR observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4947-4963.	3.3	30
27	A link between tropical intraseasonal variability and Arctic stratospheric ozone. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4280-4289.	3.3	12
28	Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data. Atmospheric Chemistry and Physics, 2012, 12, 425-436.	4.9	23
29	Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A‶rain― satellite observations. Journal of Geophysical Research, 2012, 117, .	3.3	316
30	Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. Journal of Geophysical Research, 2012, 117, .	3.3	106
31	Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements. Journal of Geophysical Research, 2012, 117, .	3.3	13
32	Evidence of the recent decade change in global fresh water discharge and evapotranspiration revealed by reanalysis and satellite observations. Asia-Pacific Journal of Atmospheric Sciences, 2012, 48, 153-158.	2.3	8
33	Chemical and biological impacts. , 2012, , 569-585.		3
34	Record of tropical interannual variability of temperature and water vapor from a combined AIRS-MLS data set. Journal of Geophysical Research, 2011, 116, .	3.3	39
35	Modulation of Atlantic aerosols by the Madden-Julian Oscillation. Journal of Geophysical Research, 2011, 116, .	3.3	27
36	Closing the Global Water Vapor Budget with AIRS Water Vapor, MERRA Reanalysis, TRMM and GPCP Precipitation, and GSSTF Surface Evaporation. Journal of Climate, 2011, 24, 6307-6321.	3.2	30

#	Article	IF	Citations
37	El Niño–Southern Oscillation in Tropical and Midlatitude Column Ozone. Journals of the Atmospheric Sciences, 2011, 68, 1911-1921.	1.7	14
38	The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon. Journal of Climate, 2011, 24, 4466-4479.	3.2	28
39	Tropical mid-tropospheric CO ₂ variability driven by the Madden–Julian oscillation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19171-19175.	7.1	45
40	Vertical Moist Thermodynamic Structure of the Madden–Julian Oscillation in Atmospheric Infrared Sounder Retrievals: An Update and a Comparison to ECMWF Interim Re-Analysis. Monthly Weather Review, 2010, 138, 4576-4582.	1.4	61
41	Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophysical Research Letters, 2010, 37, .	4.0	40
42	GRACE and AMSRâ€Eâ€based estimates of winter season solid precipitation accumulation in the Arctic drainage region. Journal of Geophysical Research, 2010, 115, .	3.3	13
43	Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter. Journal of Climate, 2009, 22, 6001-6020.	3.2	29
44	Evaluation of global land-to-ocean fresh water discharge and evapotranspiration using space-based observations. Journal of Hydrology, 2009, 373, 508-515.	5 . 4	22
45	How well can satellite data characterize the water cycle of the Maddenâ€Julian Oscillation?. Geophysical Research Letters, 2009, 36, .	4.0	11
46	Does the Maddenâ€Julian Oscillation influence aerosol variability?. Journal of Geophysical Research, 2008, 113, .	3.3	63
47	Characterization of MJOâ€related upper tropospheric hydrological processes using MLS. Geophysical Research Letters, 2008, 35, .	4.0	21
48	On the diurnal cycle of deep convection, highâ€level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework. Journal of Geophysical Research, 2008, 113, .	3.3	50
49	Comparison of upper tropospheric water vapor observations from the Microwave Limb Sounder and Atmospheric Infrared Sounder. Journal of Geophysical Research, 2008, 113, .	3.3	60
50	Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophysical Research Letters, 2007, 34, .	4.0	57
51	Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophysical Research Letters, 2006, 33, .	4.0	82
52	Vertical Moist Thermodynamic Structure and Spatial–Temporal Evolution of the MJO in AIRS Observations. Journals of the Atmospheric Sciences, 2006, 63, 2462-2485.	1.7	162
53	Climate research with the atmospheric infared sounder. , 2006, , .		4
54	Diurnal cycle of summertime deep convection over North America: A satellite perspective. Journal of Geophysical Research, 2005, 110 , .	3.3	48

Baijun Tian

#	Article	IF	CITATION
55	Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	149
56	A Simple Moist Tropical Atmosphere Model: The Role of Cloud Radiative Forcing. Journal of Climate, 2003, 16, 2086-2092.	3.2	24
57	Role of Tropical Clouds in Surface and Atmospheric Energy Budget. Journal of Climate, 2002, 15, 296-305.	3.2	44
58	Heat Balance in the Pacific Warm Pool Atmosphere during TOGA COARE and CEPEX. Journal of Climate, 2001, 14, 1881-1893.	3.2	20